Chemical composition and biotoxicity of red algae Kappaphycus alvarezii Doty (Solieriaceae)

Authors

  • D’Armas Haydelba Universidad Estatal de Milagro, Guayaquil, Ecuador
  • Neyra Marylin Universidad de Oriente, estado Sucre, Venezuela
  • Segnini Mary Isabel Universidad de Oriente, estado Sucre, Venezuela
  • Brito Leonor Universidad de Oriente, estado Sucre, Venezuela
  • Jorge Barrios Universidad de Oriente, estado Sucre, Venezuela

DOI:

https://doi.org/10.33936/at.v2i1.2412

Keywords:

Artemia salina, Phytochemistry, Kappaphycus alvarezii, Secondary metabolites, Toxicity

Abstract

A phytochemical and bioactivity study was carried out on the chloroform, ethyl acetate and methanol extracts of the Kappaphycus alvarezii Doty algae (collected on  the  Island  of  Cubagua,  Venezuela).  The  LC50  values  obtained  in  the  bioassay performed with all the extracts, showed toxicity to crustacean larvae Artemia salina (LC50 <300  μg.ml-1).  By  means  of  column  chromatography  and  preparative  thin  layer,  the extracts  were  continuously  fractionated  with  chloroform  and  ethyl  acetate,  some  sub- fractions  obtained  by  GC-MS  were  analyzed,  and  some  of  their  constituents  were identified by their fragmentation patterns and comparison of their mass spectra with the existing in the database. Finding that fraction A2 from the ethyl acetate extract showed hexadecanoic  acid,  dibutyl  phthalate  and  the  steroidal  compound  cholestane  as  major components;  in  addition  to  2,6-diter-butylcyclohexa-2,5-diene-1,4-dione,  6,10,14- trimethyl-2-pentadecanone,  2-  phenylacetic  acid  and  1-  (1-propoxy)  propane  as  minor components. While the FD fraction of the chloroform extract exhibited saturated palmitic, stearic  and  myristic  fatty  acids  as  abundant  components,  and  3-ethyl-4-methyl-1H- pyrrole-2,5-dione  in  smaller  proportion.  Octadecanoic  acid  was  identified  in  the  EM7 fraction  from  the  methanolic  extract  through  uni  and  two-dimensional  NMR.  1- phenylbutan-1-ol  was  characterized  by  the  same  spectroscopic  technique  in  the  FG fraction of the chloroform extract. The different secondary metabolites identified are the first  report  for  K.  alvarezii  and  are  possibly  responsible  for  the  in  vitro  bioactivity observed.  It  can  be  inferred  that  this  red  algae  is  a  promising  source  of  bioactive compounds.  

Downloads

Download data is not yet available.

References

Amaro M., Monasterios M., Avendaño M., Charris J. (2009). Preliminary evaluation of the toxicity of some synthetic furan derivates in two cell lines and Artemia salina. J Appl Toxicol., 29(1):36-41.

Barros M., Pinto E., Sigaud-Kutner T., Cardozo K., Colepicolo, P. (2005). Rhythmicity and oxidative/nitrosative stress in algae. Biological Rhythm Research, 36:67-82.

Brito L., Crescente, O. (2009). Actividad antimicrobiana de macroalgas marinas del oriente de Venezuela. Boletín del Instituto Oceanográfico de Venezuela, 48(1):29- 33.

Estévez J., Ciancia M., Cerezo A. (2000). The system of low molecular weight carrageenan and agaroids from the room temperatured extracted fraction of Kappaphycus alvarezii. Carbohydrate Research, 325:287-299.

Faulkner D. (2002). Marine natural products: metabolites of marine algae and herbivorous marine molluscs. Natural Products Reports, 19:1-48.

Freile Y. (2001). Algas en la “Botica”. Avance y Perspectiva, 20:283-293.

Kanatt S., Lahare P., Chawla S., Sharma A. (2015). Kappaphycus alvarezii: its antioxidant potential and use in bioactive packaging films. J Microbiol Biotech Food Sci., 5(1):1-6.

Lenis L., Benítez R., Peña, E., Trujillo D. (2007). Extracción, separación y elucidación estructural de dos metabolitos secundarios del alga marina Bostrychia calliptera. Scientia Et Technica, 13:97-102.

Mayer A., Hamann M. (2004). Marine pharmacology in 2000: marine compounds with antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antituberculosis, and antiviral activities; affecting the cardiovascular, immune, and nervous system and other miscellaneous mechanisms of action. Journal of Marine Biotechnology, 6:37-52.

Mayer A., HamannM. (2005). Marine pharmacology in 2001-2002: marine compounds with anthelmintic, antibacterial, anticoagulant, antidiabetic, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems and other miscellaneous mechanisms of action. Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 140:265-286.

Meyer B., Ferrigni N., Putnam J., Jacobsen L., Nichols D., McLaughlin J. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Médica, 45(1):31-34.

McLaughlin J., Lingling L., Anderson J. (1998). The use of biological assays to evaluate botanicals. Drug Information J., 32:513-524.

Noguera T. (2007). Aislamiento, elucidación estructural y posible bioactividad de algunos de los metabolitos secundarios de la planta Ludwigia octovalvis (Onagraceae), Trabajo de pregrado, Universidad de Oriente, Cumaná, Venezuela (junio 2007).

Ondarza M., Rincones R. (2008). El cultivo de algas marinas: alternativa industrial en acuacultura sustentable a mediano y largo plazo. CienciaUAT, 3(2): 68-73.

Ordaz G., D’Armas H., Hernández J., Camacho A. (2009). Identificación mediante CG/EM de algunos constituyentes con actividad biológica del extracto apolar del celenterado Eunicea sp. CIENCIA, 17(3):245-254.

Parra, L., Silva, Y., Iglesias, B., y Guerra, S. (2001). Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine, 8(5):395-400.

Pastrana O., Santafé G., Torres O. (2016). Perfil de Ácidos Grasos y Evaluación de las Actividades Antioxidante y Antifúngica del Holotureo Isostichopus badionotus. Inf. Tecnol, 27(3):3-10.

Pereira L., Amado A., Critchley A., Velde F., Ribeiro P. (2009). Identification of selected seaweed polysaccharides (phycocolloids) by vibrational spectroscopy (FTIR- ATR and FT-Raman). Food Hydrocolloids, 23:1903-1909.

Pérez C. (2013). Caracterización biológica y química de Kappaphyccus alvarezzi de Panamá, Tesis Doctoral, Departamento de Biología, Universidad de las Palmas de Gran Canaria, España (febrero 2013).

Pino O., Lazo J. (2010). Ensayo de Artemia: útil herramienta de trabajo para ecotoxicólogos y químicos de productos naturales. Revista de Protección Vegetal, 22(1): 35-36.

Prabha V., Prakash D., Sudha P. (2013). Analysis of bioactive compounds and antimicrobial activity of marine algae Kappaphycus alvarezii using three solvent extracts. IJPSR, 4 (1):306-310.

Puglisi M., Tan L., Jensen P., Fenical W. (2004). Capisterones A and B from the tropical green alga Penicillus capitatus: unexpected anti-fungal defenses targeting the marine pathogen Lindra thallasiae. Tetrahedron, 60:7035-7039.

Ranganayaki P., Susmitha S., Vijayaraghavan R. (2014). Study on metabolic compounds of Kappaphycus alvarezii and its in-vitro analysis of anti-inflammatory activity. Int. J. Curr. Res. Aca. Res., 2 (10):157-166.

Singh S., Kate B., Banerjee U. (2005). Bioactive compounds from cyanobacteria and microalgae: an overview. Critical Reviews in Biotechnology, 25:73-95.

Stephan C.E. (1977). Methods for calculating an LC50. In: Mayer FL, Hamelink J. (eds). Aquatic Toxicology and Hazard Evaluation: ASTM STP 634. American Society for Testing and Material, Philadelphia.

Suresh K., Ganesan K., Subba, R. (2007). Antioxidant potential of solvent extracts of Kappaphycus alvarezii (Doty) Doty – an edible seaweed. Food Chemistry, 107:289-295.

Valdés O., Díaz N., Cabranes Y., Acevedo M., Areces A., Graña L., Díaz C. (2003). Macroalgas de la plataforma insular cubana como fuente de extractos bioactivos. Avicennia, 16:36-45.

Published

2020-05-13