Effect of natural feeding with marine meiobenthic and biofloc organisms on production parameters in Penaeus vannamei shrimp culture

Authors

  • Teresa Eulalia Ibarra-Mayorga Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo-Manabí, 13104, Ecuador. http://orcid.org/0000-0002-5451-3990
  • Ariana Solange Jijón-Vergara Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo-Manabí, 13104, Ecuador. http://orcid.org/0000-0001-5129-6313
  • Jonathan Josue Proaño-Morales Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo-Manabí, 13104, Ecuador. http://orcid.org/0000-0002-5451-3990
  • Víctor Alfonso Cobeña-Veliz Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Portoviejo-Manabí, 13104, Ecuador. http://orcid.org/0000-0002-5451-3990

DOI:

https://doi.org/10.33936/at.v3i2.3691

Keywords:

Biofloc, Substratum, Nematodes, Shrimp

Abstract

With human population growing, shrimp consumption increases exponentially, which is why the search for new technologies that reduce costs and optimize production is essential. Biofloc systems, composed of bacteria, algae, protozoa, and metazoan, have been considered an efficient alternative as a food supplement in shrimp farming. Furthermore, the supply of meiofauna in crops has positive effects on shrimp growth due to its high protein and polyunsaturated fatty acid content. The effect of natural feeding with marine meiobenthic organisms and biofloc was evaluated on the production parameters in the Penaeus vannamei culture. The test was carried out in the summer season and water quality parameters and productive indicators were analyzed. The initial culture density was 40 postlarvae per 0.18 m2. A completely randomized experimental design was used with four treatments and three replications. In treatment 1 (B), the conventional technology for shrimp culture was used, with dry feed and seawater. In treatment 2 (S) a layer of five centimeters of fine sandy substrate and dry feed were used. In treatment 3 (S-Bf) substrate, biofloc, and dry feed were used. In treatment 4 (B-Bf) biofloc and dry feed were applied. The values ​​of temperature, pH, salinity, dissolved oxygen, suspended solids, nitrite, nitrate, and ammonia were kept within the optimal parameters for the species. The treatment with the highest final weight was S-Bf (1.17 g) and the one with the lowest weight was B with 0.76 g). The results suggest that the combination of bacterial flocs of the biofloc plus the meiobenthic microinvertebrates can become a strategy to improve the productivity of the culture and maintain the environmental parameters in optimal intervals.

 

Downloads

Download data is not yet available.

References

Ballester E.L.C., Abreu P.C., Cavalli R.O., Emerenciano M.., De Abreu L., Wasielesky Jr. (2010). Effect of practical diets with different protein levels on the performance of Farfantepenaeus paulensis juveniles nursed in a zero exchange suspended microbial flocs intensive system. Aquaculture Nutrition, 16(2): 163-172. DOI: https://doi.org/10.1111/j.1365-2095.2009.00648.x.

Ballester E. L., Wasielesky Jr. W., Cavallia R. O., Abreub P. C. (2007). Nursery of the pink shrimp Farfantepenaeus paulensis in cages with artificial substrates: Biofilm composition and shrimp performance. Aquaculture 269 (1-4): 355-362. DOI: https://doi.org/10.1016/j.aquaculture.2007.04.003

Brüggemann, J. (2012). Nematodes as Live Food in Larviculture – A Review. Journal of the world aquaculture society, 43(6): 739-763. DOI: http://dx.doi.org/10.1111/j.1749-7345.2012.00608.x.

Brown N., Eddy S., Plaud S. (2011). Utilization of waste from a marine recirculating fish culture system as a feed source for the polychaete worm, Nereis virens. Estados Unidos: Aquaculture 322-323: 177-183. DOI: https://doi.org/10.1016/j.aquaculture.2011.09.017

Conover, W. 1999. Practical Nonparametric Statistcs. John Wiley & Sons, Inc., New York.

Cuzon G., Lawrence A., Gaxiola G., Rosas C., Guillaume J. (2004). Nutrition of Penaeus vannamei reared in tanks or in ponds. Aquaculture, 213(1-4): 513-551. DOI: https://doi.org/10.1016/j.aquaculture.2003.12.022

Duncan, D.B. 1955. Multiple range and multiple F tests. Biometrics 11:1

Durruty. (2001). Requerimientos nutrimentales de proteína en postlarvas de Litopenaeus setiferus y Penaeus vannamei. Tesis de Maestría en Ciencias Biológicas de Recursos Acuáticos. Universidad de Sonora, Rosales y Niños Héroes, México.

Emerenciano M. G., Martínez-Córdova L. R., Martínez-Porchas M., Miranda-Baeza A. (2017). Biofloc Technology (BFT): A tool for water quality management in aquaculture in Tutu H. (ed) Water Quality. INTECH, 91-109.

Esparza-Leal H. M., Cardozo A.P., Wasielesky Jr. W. (2015). Performance of Penaeus vannamei postlarvae reared in indoor nursery tanks at high stocking density in clear-water versus biofloc system, Aquacultural Engineering, 68: 28-34. DOI: https://doi.org/10.1016/j.aquaeng.2015.07.004

Focken U., Schlechtriem C., vonWuthenau M., García-Ortega A., Puello-Cruz A., Becker K. (2006). Panagrellus redivivus mass produced on solid media as live food for Penaeus vannamei larvae. Aquaculture Research, 37(14):1429-1436. DOI: https://doi.org/10.1111/j.1365-2109.2006.01578.x

Furtado P., Valenzuela M., Rodríguez-Fuentes G., Campos B., Wasielesky W., Gaxiola G. (2016). Chronic effect of nitrite on the rearing of the white shrimp Penaeus vannamei in two salinities. Rio Grande: Marine and Freshwater Behaviour and Physiology, 49(3): 201-211. DOI: http://dx.doi.org/10.1080/10236244.2016.1163837

Fry J.P., Mailloux N.A., Love D.C., Milli M.C., Cao L. (2018). Feed conversion efficiency in aquaculture: do we measure it correctly?. Environmental Research Letters, 13(2018)024017. DOI: http://dx.doi.org/10.1088/1748-9326/aaa273

Giere, O. (2009). Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments (2da ed.). Berlin: Springer.

Grealis, E., Hynes S., O'Donoghue C., Vega A., Osch S. V., Twomey C. (2017). The economic impact of aquaculture expansion: An input-output approach. Marine Policy, 81: 29-36. DOI: http://dx.doi.org/10.1016/j.marpol.2017.03.014

Grzelak K., Kotwicki L. (2011). Distribución de la meiofauna en el fiordo Hornsund, Spitsbergen. Polar Biology, 35: 269–280.

Ibarra-Mayorga E., Rojas-García C., Mateo R. L. (2014). Ensayo de un sistema artificial con sustrato para crecimiento de juveniles de Penaeus vannamei: evaluación de dos micro cohortes con participación de nematodos y ‘bioflocs’. La Técnica, 12: 64-75.

Jury C., Thomas F., Atkinson M. J., Toonen R. J. (2013). Buffer Capacity, Ecosystem Feedbacks, and Seawater Chemistry under Global Change. Water, 5(3):1303-1325. DOI: http://dx.doi.org/10.3390/w5031303

Kahan D, T Bar-El, Y Brandstein, M Rigbi, B. Olano. (1980). Free-living nematodes as a dietary supplement in the rearing of fish fry and hatcheries. General Fisheries Council for the Mediterranean Studies and Reviews 57: 67-78.

Kureshy N., Davis A. (2002). Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Penaeus Vannamei. Aquaculture, 204(1): 125-143. DOI: http://dx.doi.org/10.1016/S0044-8486(01)00649-4.

Kruskal W. H., Wallis W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47 (260): 583–621. DOI: http://dx.doi.org/10.1080/01621459.1952.10483441.

Lee P., Smith Lawrence. (1984). Digestive proteases of Penaeus vannamei: relationship between enzyme activity, size and diet. Aquaculture, 42 (3-4): 225-239. DOI: https://doi.org/10.1016/0044-8486(84)90103-0

Levene, H. (1960) Robust Tests for Equality of Variances, In: I. Olkin, et al. (Eds.) Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling, Stanford University Press, Palo Alto, pp. 278-292.

Loureiro C. K., Wasielesky, W., Abreu P. C. (2012). The use of protozoan, rotifers and nematodes as live food for shrimp raised in BTF system. Atlântica, 34(1): 5-12. DOI: http://dx.doi.org/10.5088/atl.2012.34.1.5

Martínez-Córdova, Campaña-Torres, Porchas-Cornejo. (2003). Dietary protein level and natural food management in the culture of blue (Penaeus stylirostris) and white shrimp (Penaeus vannamei) in microcosms. Aquaculture Nutrition, 9(3): 155-160. DOI: http://dx.doi.org/10.1046/j.1365-2095.2003.00235.x


Martínez-Córdova, L. R. (2003). Camaronicultura: Avances y tendencias. AGT Editor, S.A. Sonora, México.

Nunes A.J.P., Gesteira T.C.V., Goddard, S. (1997). Food ingestion and assimilation by the southern brown shrimp Penaeus subtilis under semi-intensive culture in NE Brazil. Aquaculture, 149(1-2): 121-136. DOI: https://doi.org/10.1016/S0044-8486(96)01433-0.

Prata Gaona C. A., Serra F. P., Furtado P. S., Poersch L. H., Wasielesky Jr. W. (2016). Effect of different total suspended solids concentrations on the growth performance of Penaeus vannamei in a BFT system. Aquacultural Engineering, 72-73: 65-69. DOI: http://dx.doi.org/10.1016/j.aquaeng.2016.03.004.

Rios da Silva K. R., Abreu P. C., Wasielesky W. (2009). Dinamica del nitrógeno y del fósforo en el cultivo superintensivo de camarones Penaeus vannamei y Farfantepenaeus paulensis sin renovación de agua. Tesis de Maestría en Acuicultura., 55 pp.

Rodier J., Legube G., Merlet N. (2011). Análisis del agua. 9ª Edición. Ed. Omega, S.A. Barcelona-España, 336 pp.

Samocha T., Lewinsohn C. (1977). A preliminary report on rearing penaeid shrimps in Israel. Aquaculture, 10(3): 291-292. DOI: https://doi.org/10.1016/0044-8486(77)90009-6.

Shapiro S., Wilk B. (1965). An análisis of variante test for normalita (complete simples) Biométrica, 52(3-4): 591-611 DOI: https://doi.org/10.2307/2333709.

Wasielesky W., Atwood H., Stokes A., Browdy C. L. (2006). Effect of natural production in a zero exchange suspended microbial floc based super-intensive culture system for white shrimp Penaeus vannamei. Aquaculture, 258(1-4): 396-403. DOI: http://dx.doi.org/10.1016/j.aquaculture.2006.04.030.

Wilkenfeld J. S., Lawrence A. L., Kuban F. D. (1984). Survival, metamorphosis and growth of penaeid shrimp larvae reared on a variety of algal and animal foods. Journal of the World Mariculture Society, 15: (1-4) 31-49. DOI: http://dx.doi.org/10.1111/j.1749-7345.1984.tb00134.x.

Xu W., J. Pan, L. Q., Sun X. H., Huang J. (2012). Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Penaeus vannamei (Boone) in zero -water exchange culture tanks. Aquaculture Research, 44(7):1-10. DOI: http://dx.doi.org/10.1111/j.1365-2109.2012.03115.x.

Zhang K., Pan L., Chen W., Wang C. (2015). Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Penaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture Research, 48(3):1194-1208. DOI: http://dx.doi.org/10.1111/are.12961.

Published

2021-07-28