Effect of temporal temperature variation on Penaeus vannamei shrimp production in pond farming systems
DOI:
https://doi.org/10.33936/at.v6i1.5870Keywords:
Aquaculture, , water quality, , shrimp farming, , climate change, , production systems.Abstract
The present study analyzed the variations of water temperature during the cultivation of Penaeus vannamei in open systems with a three-phase transfer method, to understand the variation patterns in the dry (DS) and rainy (RS) seasons and their effect on the dissolved oxygen, feed consumption, and yield shrimp production. During the DS the minimum temperature was recorded in the morning in the phase 1 at 23.8 °C, and the maximum temperature in the afternoon in phase 3 at 29.8 °C. In the RS, the minimum temperature was 20.5 °C and the maximum in the afternoon was 34.7 °C, both temperatures corresponding to phase 3 of cultivation. The minimum oxygen concentration in the DS was recorded in Phase 1 at 2.04 mg/L and the maximum at 11.8 mg/L in the afternoon. In the RS, the minimum concentration of DO in the water was recorded in phase 1 with 2.16 mg/L, and the maximum was in the evening of phases 2 and 3 with 11.8 mg/L. During the RS, the temperature had more significant variability than the DS, while DO concentrations recorded in both seasons were not significantly different. During the RS, higher mortality and weekly growth were recorded compared to the DS, but the biomass produced in the DS was 17.62% higher, generating better economic income. The seasonal patterns in Ecuador are increasing the temperature above permissible levels influencing the DO concentrations in the water and affecting the productivity of the shrimp P. vannamei in open culture systems.
Downloads
References
Avnimelech Y., Ritvo G. (2003). Shrimp and fish pond soils: Processes and management. Aquaculture, 220(1):549-569. http://doi.org/10.1016/S0044-8486(02)00641-5
Boyd C. E. (2018). Proper management most important aspect of aquaculture pond water quality management. Global Seafood Alliance, 1-6.
Boyd C. E. (2020). Efectos del tiempo y el clima en la acuacultura. Responsible Seafood Advocate. https://www.globalseafood.org/advocate/efectos-del-tiempo-y-el-clima-en-la-acuacultura/
Boyd C. E., Tucker C. S. (1998). Pond aquaculture water quality management. Kluwer Academic Publishers.
Boyd, C. E., Watten B. (1989). Aeration systems in aquaculture. Review of Aquatic Sciences, 1(3):425-472.
Camacho-Jiménez L., Felix-Portillo M., Nuñez-Hernandez D. M., Yepiz-Plascencia G. (2019). Molecular cloning and modeling of the Tp53-induced glycolysis and apoptotic regulator (TIGAR) from the Pacific white shrimp Litopenaeus vannamei and its expression in response to hypoxia. Fish & Shellfish Immunology, 93:484-491. https://doi.org/10.1016/j.fsi.2019.08.003
Camacho-Jiménez L., Peregrino-Uriarte A. B., Martínez-Quintana J. A., Yepiz-Plascencia G. (2018). The glyceraldehyde-3-phosphate dehydrogenase of the shrimp Litopenaeus vannamei: Molecular cloning, characterization and expression during hypoxia. Marine environmental research, 138:65-75. https://doi.org/10.1016/j.marenvres.2018.04.003
Cámara Nacional de Acuacultura. (2024). Estadísticas- Reporte de Exportaciones Ecuatorianas Totales. Revista Aquacultura, 157:58. https://www.cna-ecuador.com/revista-acuacultura/
Castillo-Ochoa B. D., Velásquez-Lopez P. C. (2021). Manejo estacional de los sistemas de producción de camarón en el Ecuador. Sociedad & Tecnología, 4(3):447-461. https://doi.org/10.51247/st.v4i3.151
De Castro Freire M. V., Alves Costa M. G., Lopes Ferreira R. (2021). Eficiência dos sistemas de cultivo de camarões marinhos. Pubvet, 1-7. https://doi.org/10.31533/pubvet.v15n2a752.1-7
Do H., Ho T. Q. (2022). Climate change adaptation strategies and shrimp aquaculture: Empirical evidence from the Mekong Delta of Vietnam. Ecological Economics, 196.
FAO. (2022). El estado mundial de la pesca y la acuicultura. Hacia la transformación azul. https://www.fao.org/3/cc0461es/cc0461es.pdf
Ferreira N. C., Bonetti V., Seiffert W. Q. (2011). Hydrological and Water Quality Indices as management tools in marine shrimp culture. Aquaculture, 318((3-4):425-433. https://doi.org/10.1016/j.aquaculture.2011.05.045
Fóes G., Wasielesky Junior W., Marchetti I., Rosas V. (2021). Assessing the effect of temperature on FCR in Pacific white shrimp cultured in biofloc systems. Global Seafood Alliance, 1-7.
García A., Brune D. (1991). Transport limitation of oxygen in shrimp culture ponds. Aquacultural Engineering, 10(4):269-279. https://doi.org/10.1016/0144-8609(91)90016-D
González-Ruiz R., Leyva-Carrillo L., Peregrino-Uriarte A. B., Yepiz P. G. (2022). The combination of hypoxia and high temperature affects heat shock, anaerobic metabolism, and pentose phosphate pathway key components responses in the white shrimp (Litopenaeus vannamei). Cell Stress and Chaperones, 1-17. https:/doi.org/10.1007/s12192-022-01265-1
Hirono Y. (2009). Preliminary Report on Shrimp Culture Activites In Ecuador. Journal of the World Mariculture Society, 14(1-4):451-457. https://doi.org/10.1111/j.1749-7345.1983.tb00097.x
Islam M. A., Akber M. A., Ahmed M., Rahman M. M., Rahman M. R. (2018). Climate change adaptations of shrimp farmers: a case study from southwest coastal Bangladesh. Climate and Development, 11(6):459-468. https://doi.org/10.1080/17565529.2018.1442807
Limsuwan C., Ching C. A. (2018). Temperature affects shrimp survival, feed conversion. Responsible Seafood Advocate. https://www.globalseafood.org/advocate/temperature-affects-shrimp-survival-feed-conversion/#:~:text=Lab%20trials%20at%20Kasetsart%20University,white%20shrimp%20(Litopenaeus%20vannamei).
Martínez Palacios C. A., Ross L. G. (1986). The effects of temperature, body weight, and hypoxia on the oxygen consumption of the Mexican mojarra, Cichlasoma urophthalmus (Günther). Aquaculture Research, 17(4):243-248. https://doi.org/10.1111/j.1365-2109.1986.tb00110.x
Montenegro M., Campozano L., Urdiales-Flores D., Maisincho L., Serrano-Vincenti S., Borbor-Cordova M. J. (2022). Assessment of the Impact of Higher Temperatures Due to Climate Change on the Mortality Risk Indexes in Ecuador Until 2070. Frontiers in Earth Science, 9:1340. https://doi.org/10.3389/feart.2021.794602
Ochoa-Pereira P. M., Velásquez-López P.C. (2023). Effect of fasting on molting and survival rate in postlarvae of the shrimp Litopenaeus vannamei: Efecto del ayuno sobre la muda y la tasa de supervivencia en postlarvas del camarón. Revista de Biología Marina y Oceanografía, 58(1):10-18.
Piña-Valdez P., Arzola G. J., Nieves-Soto M., Medina-Jasso M. A. (2015). Efecto combinado de Temperatura y Salinidad en el consumo de oxígeno en postlarvas de Camarón Blanco Litopenaeu vannamei. Boletim do Instituto de Pesca Sao Paulo, 41(1):89-101.
Ponce-Palafox J., Martinez-Palacios C. A., Ross L. G. (1997). Los efectos de la salinidad y la temperatura en las tasas de crecimiento y supervivencia de juveniles de camarón blanco, Penaeus vannamei, Boone, 1931. Aquaculture, 157(1-2):107-115. https://doi.org/10.1016/S0044-8486(97)00148-8
Robertson C. (2006). Australian Prawn Farming Manual: Health Management for profit. The State of Queensland, Department of Primary Industries and Fisheries, Brisbane, 159. http://aciar.gov.au/publication/CoP01
Sahrawat K. L. (2004). Organic matter accumulation in submerged soils. Advances in Agronomy, 81:169-201. https://doi.org/10.1016/S0065-2113(03)81004-0
Santa K., Vinatea L. (2007). Evaluation o respiration rates and mechanical aeration requirements in semi-intensive shrimp Litopenaeus vannnamei culture ponds. Aquacultural Egineering, 1:73-80. https://doi.org/10.1016/j.aquaeng.2006.07.002
Seabra de Malgahaes M. E. (2004). Cultivo do camarao marihno Litopenaeus vannamei (Boone, 1931) em sistema multifásico. Masters Thesis. Universidade Federal Rural de Pernambuco, Recife.Velásquez López P., Solórzano J., Ochoa P., Solano G., Quizhpe P., Guillen R. (2023). Caracterización de la calidad del agua durante el cultivo del camarón Litopenaeus vannamei con agua dulce en el Sur del Ecuador. Journal of the Selva Andina Animal Science 10(2):74-87. https://doi.org/10.36610/j.jsaas.2023.100200074.
Villareal H., Hinojosa P., Naranjo J. (1994). Effect of temperature and salinity on the oxygen consumption of laboratory produced Penaeus vannamei postlarvae. Comparative Biochemistry and Physiology Part A: Physiology, 108(2-3):331-336. https://doi.org/10.1016/0300-9629(94)90103-1
Vinatea L., Muedas W., Arantes R. (2011). The impact of oxygen consumption by the shrimp Litopenaeus vannamei according to body weight, temperature, salinity, and stocking density on pond aeration: A simulation. Acta Scientiarum Biological Sciences, 33(2):125-132. https://doi.org/10.4025/actascibiolsci.v33i2.7018
Wang Z., Qu Y., Yan M., Li J., Zou J., Fan L. (2019). Physiological responses of Pacific White Shrimp Litopenaeus vanameito temperature fluctuation in low-salinity water. Frontiers in physiology, 10:450479. https://doi.org/10.3389/fphys.2019.01025
Wigglesworth J. (2002). Temperature effects on shrimp survival to disease. Global Seafood Allience. https://www.globalseafood.org/advocate/temperature-effects-on-shrimp-survival-to-disease/
Wyban J., Walsh W. A., Godin D. M. (1995). Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture, 138(1-4):267-279.
Xu Z., Guan W., Xie D., Lu W., Ren X., Yuan J., Mao L. (2019). Evaluation of immunological response in shrimp Penaeus vannamei submitted to low temperature and air exposure. Dev. Comp. Immunol, 100:103413. https://doi.org/10.1016/j.dci.2019.103413
Published
Issue
Section
License
Copyright (c) 2024 Ana Noemi Narvaez Vega, Génesis Estefanía Romero Bustamante, Patricio Colón Velásquez López

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

