Effect of two probiotics on survival, growth and protein concentration in hemolymph of Penaeus vannamei Boone 1931 confronted with ionic imbalance

Authors

  • Alexander Javier Basurto Aguirre Facultad de Posgrado, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador.
  • Alexandra Elizabeth Bermúdez-Medranda Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Facultad de Acuicultura y Ciencias del Mar. Universidad Técnica de Manabí Bahía de Caráquez, Manabí EC130104, Ecuador. https://orcid.org/0000-0002-5451-3990
  • Yanis Cruz Quintana Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Facultad de Acuicultura y Ciencias del Mar. Universidad Técnica de Manabí Bahía de Caráquez, Manabí EC130104, Ecuador.
  • Juan Carlos Vélez-Chica Departamento de Acuicultura, Pesca y Recursos Naturales Renovables. Grupo de Investigación en Sanidad Acuícola, Inocuidad y Salud Ambiental. Facultad de Acuicultura y Ciencias del Mar. Universidad Técnica de Manabí Bahía de Caráquez, Manabí EC130104, Ecuador. https://orcid.org/0000-0002-6660-6940

DOI:

https://doi.org/10.33936/at.v5i3.5980

Keywords:

Aquaculture, Bacillus, shrimp, freshwater culture, yeasts, potassium

Abstract

Probiotics are commonly used in aquaculture for their benefits for growth, disease prevention and stress reduction. However, the benefits of probiotics in shrimps grown at low salinity have been little studied even though this type of aquaculture has increased considerably in the last decade. In this sense, this study aims to evaluate the effects of probiotics on the survival, increase in weight and length, and total protein concentration in hemolymph of Penaeus vannamei faced with ionic imbalance. A completely randomized experimental design was applied with 288 juveniles of P. vannamei (9.80 ± 1.33 g; 12.11 ± 1.06 cm) distributed in 24 aquariums of 40 L. A control at 30 ‰ and three treatments at 2 ‰ (n = 8) with three replicates each was used. All groups were duplicated, and probiotics (Aquablend C® or HLBAC®) were added to one of the duplicates. To generate the ionic imbalance, magnesium was increased in one of the 2 ‰ treatments and potassium in the other. The bioassay lasted 96 h, and the shrimp were fed with a ration equivalent to 4% of biomass every 8 h. Water quality parameters, initial and final length and weight, daily mortality and total proteins in hemolymph were recorded, to compare among treatments. Survival was significantly reduced with ion imbalance; in the treatments with ion modification, survival was significantly greater when probiotics were incorporated. The increase in length and weight in treatments at low salinity was significantly lower than in treatments at 30 ‰. The total protein concentration in hemolymph did not vary significantly among treatments. The use of probiotics significantly improved the survival of P. vannamei against ionic imbalance at 2 ‰, which opens a new line of research for the development of low salinity shrimp culture protocols. 

Downloads

Download data is not yet available.

References

Abrori M., Soegietano A., Winarni D. (2022). Survival, osmoregulatory and hemocyte changes in Litopenaeus vannamei postlarvae acclimated to different intervals of salinity reduction. Aquaculture Reports, 25(101222): 1–8. https://doi.org/10.1016/j.aqrep.2022.101222

Aguilera-Rivera D., Escalante-Herrera K., Gaxiola G., Prieto-Davó A., Rodríguez Fuentes G., Guerra-Castro E., Hernández-López J., Chávez-Sánchez M.C., Rodríguez-Canul R. (2019). Immune response of the Pacific white shrimp, Litopenaeus vannamei, previously reared in biofloc and after an infection assay with Vibrio harveyi. Journal of the World Aquaculture Society, 50: 119–136. https://doi.org/10.1111/jwas.12543

Anuta J., Buentello A., Patnaik S., Lawrence A., Mustafa A., Hume M., Gatlin III D., Kemp M. (2011). Effect of Dietary Supplementation of Acidic Calcium Sulfate (Vitoxal) on Growth, Survival, Immune Response and Gut Microbiota of the Pacific White Shrimp, Litopenaeus vannamei. Journal of the World Aquaculture Society, 42(6): 834–844. https://doi.org/10.1016/j.fsi.2019.02.029

Amoah K., Huang Q.C., Tan B.P., Zhang S., Chi S.Y., Yang Q.H., Liu H.Y., Dong X.H. (2022). Dietary supplementation of probiotic Bacillus coagulants ATCC 7050, improves the growth performance, intestinal morphology, microflora, immune response, and disease confrontation of Pacific white shrimp, Litopenaeus vannamei. Fish and Shellfish Immunology, 87: 796–808. https://doi.org/10.1016/j.fsi.2019.02.029

Aweya J.J., Zheng Z.H., Zheng X.Y., Yao D.F., Zhang Y.L. (2021). The Expanding Repertoire of Immune-Related Molecules with Antimicrobial Activity in Penaeid Shrimps: A Review. Reviews in Aquaculture, 13: 1907–1937. https://doi.org/10.1111/raq.12551

Boyd C., Davis R., McNevin A. (2021). Comparison of resource use for farmed shrimp in Ecuador, India, Indonesia, Thailand, and Vietnam. Aquaculture, Fish and Fisheries, 1: 3–15. https://doi.org/10.1002/aff2.23

Boyd C., Thunjai T. (2003). Concentrations of Major Ions in Waters of Inland Shrimp Farms in China, Ecuador, Thailand, and the United States. Journal of the World Aquaculture Society, 34(4): 524–532. https://doi.org/10.1111/j.1749-7345.2003.tb00092.x

Boyd C., Tucker C. (1998). Pond Aquaculture Water Quality Management. Springer. New York: Springer. 700 pp. https://doi.org/10.1007/978-1-4615-5407-3

Esparza-Leal H., Ponce-Palafox J., Cervantes-Cervantes C., Valenzuela-Quiñónez W., Luna-González A., López-Álvarez E., Vázquez-Montoya N., López-Espinosa M., Gómez-Peraza R. (2019). Effects of low salinity exposure on immunological, physiological and growth performance in Litopenaeus vannamei. Aquaculture Research, 50(3): 944–950. https://doi.org/10.1111/are.13969

Huang M., Dong Y., Zhang Y., Chen Q., Xie J., Xu C., Zhao Q., Li E. (2019). Growth and Lipidomic Responses of Juvenile Pacific White Shrimp Litopenaeus vannamei to Low Salinity. Frontiers in Physiology, 23(1087): 1–13. https://doi.org/10.3389/fphys.2019.01087

Jaffer R., Saraswathyb R., Ishfaqc M., Antony J., Bundela D., Sharma P. (2019). Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture, 734561: 2–20. https://doi.org/10.1016/j.aquaculture.2019.734561

Kumar V., Roy S., Kumar U., Kumar D. (2016). Application of Probiotics in Shrimp Aquaculture: Importance, Mechanisms of Action, and Methods of Administration. Reviews in Fisheries Science & Aquaculture, 24: 342–368. https://doi.org/10.1080/23308249.2016.1193841

Li E., Wang X., Chen K., Xu C., Qin J.G., Chen L. (2017). Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Reviews in Aquaculture, 9(1): 57–75. https://doi.org/10.1111/raq.12104

Li E., Xiong Z., Chen L., Zeng C., Li K. (2008). Acute toxicity of boron to juvenile white shrimp Litopenaeus vannamei, at two salinities. Aquaculture, 278: 175–178.

Luo K., Tian X., Wang B., Wei C., Wang L.C., Zhang S., Liu Y., Li T.H., Dong S. (2021). Evaluation of paraprobiotic applicability of Clostridium butyricum CBG01 in improving the growth performance, immune responses, and disease resistance in Pacific white shrimp, Penaeus vannamei. Aquaculture, 544(737041): 1–9. https://doi.org/10.1016/j.aquaculture.2021.737041

Miao S., Zhao C., Zhu J., Hu J., Dong X., Sun, L. (2018). Dietary soybean meal affects intestinal homoeostasis by altering the microbiota, morphology, and inflammatory cytokine gene expression in northern snakehead. Scientific Reports, 8(113): 1–10. https://doi.org/10.1038/s41598-017-18430-7

Moreira F., Lima F., Cavalcante D., Carmo S. (2020). Ionic balance of water and physical-chemical properties of soil from marine shrimp farms of the Jaguaruna interior county, Ceará, Brazil. Ciência Animal Brasileira, 21(e-56913): 1–14. https://doi.org/10.1590/1809-6891v21e-56913

Qiuyu Z., Tao H.L. Xinyu W. Jiteng Y. Yunxia Y. Xiaojun Z. Puqiang L. Teng X. Hanying, Chunlin W. (2020). Effects of dietary carbohydrate levels on growth, body composition, and gene expression of key enzymes involved in hepatopancreas metabolism in mud crab Scylla paramamosain. Aquaculture, 529(1):735638. https://doi.org/10.1016/j.aquaculture.2020.735638

Rubio-Gastélum D., Valenzuela-Quiñónez W., Parra-Bracamonte G.M., Santamaria-Miranda A. (2014). Response of metabolites in hemolymph and productive performance of pacific white shrimp Litopenaeus vannamei cultured at high densities in laboratory. Revista de Biología Marina y Oceanografía, 49(3): 601–606. https://doi.org/10.4067/s0718-19572014000300017

Valenzuela-Madrigal I., Valenzuela-Quiñónez W., Esparza-Leal H., Rodríguez-Quiroz G., Aragon-Noriega E. (2017). Effects of ionic composition on growth and survival of white shrimp Litopenaeus vannamei culture at low-salinity well water. Revista de Biología Marina y Oceanografía, 52: 103–112. http://dx.doi.org/10.4067/S0718-19572017000100008.

Wang Z., Qu Y., Yan M., Li J., Zou J., Fan L. (2019). Physiological Responses of Pacific White Shrimp Litopenaeus vannamei to Temperature Fluctuation in Low-Salinity Water. Frontiers in Physiology, 10(1025): 1–10. https://doi.org/10.3389/fphys.2019.01025

Weihua G., Luo T., Tinghua H., Min Y., Wei H., Qiaoqing X. (2016). Effect of salinity on the growth performance, osmolarity and metabolism-related gene expression in white shrimp Litopenaeus vannamei. Aquaculture Reports, 4: 125–129. https://doi.org/10.1016/j.aqrep.2016.09.001

Wyban J. (2019). Selective Breeding of Penaeus vannamei: Impact on World Aquaculture and Lessons for Future. Journal of Coastal Research., 86(SI): 1–5. https://doi.org/10.2112/SI86-001.1

Published

2023-10-19

Most read articles by the same author(s)