Parámetros fisiológicos de carpas de Amur Cyprinus rubrofuscus (Lacépède 1803) bajo anestesia después de un estímulo doloroso
DOI:
https://doi.org/10.33936/at.v6i3.6951Keywords:
Anestesia, Pellizco de aletas, Parámetros fisiológicos, CortisolAbstract
El objetivo de este ensayo fue evaluar la frecuencia cardíaca, frecuencia opercular, parámetros sanguíneos y niveles de cortisol en carpas de Amur (Cyprinus rubrofuscus) anestesiadas en soluciones a base de benzocaína en concentraciones de 70, 100 y 130 mg/L (B70, B100 y B130) o soluciones a base de eugenol en concentraciones de 20, 40 y 60 mg/L (E20, E40 y E60) tras pellizco de la aleta caudal. El grupo control fue manejado sin anestesia. Se realizó anestesia en baño hasta que las carpas alcanzaron el plano anestésico, seguido de pellizco de la aleta caudal durante un minuto. Se registraron los tiempos de inducción y recuperación, frecuencia cardíaca y opercular antes y después del pellizco de las aletas bajo anestesia, y parámetros sanguíneos, niveles de glucosa y cortisol después del pellizco de las aletas. Las carpas del tratamiento E20 solo alcanzaron la etapa de sedación, y los grupos E40 y E60 mostraron una respuesta motora durante el pellizco de la aleta caudal, y niveles más altos de glucosa en sangre en las carpas E20 y E60. Aun así, las carpas de Amur anestesiadas con benzocaína no tuvieron alteración de la frecuencia cardíaca después del pellizco de las aletas, pero en las carpas B130 se detectaron niveles más altos de glucosa y un recuento elevado de neutrófilos en las carpas B70. Además, los niveles de cortisol en plasma fueron más altos en las carpas B100 y E60, sin diferencias entre los grupos de control y experimentales. En este ensayo, los análisis de parámetros fisiológicos sugieren una anestesia más eficaz cuando se utilizan 100 mg/L de benzocaína con ventilación artificial. Se debe evitar el eugenol ya que no promueve la relajación muscular.
Downloads
References
Adibi S., Ramezani M., Kakoolaki S., Kazempoor R. (2024). Effects of formaldehyde bisulfite sodium on the reduction of nitrogen compounds in the tanks, hematology, and immunity of Cyprinus rubrofuscus. Iran. J. Fish. Sci. 23:695-712. https://doi.org/10.22092/ijfs.2024.131509
Altun T., Hunt A. Ö., Usta F. (2006). Effects of clove oil and eugenol on anesthesia and some hematological parameters of European eel Anguilla anguilla, L., 1758. J. Appl. Anim. Res. 30:171-176. https://doi.org/10.1080/09712119.2006.9706612
Antunes M. I. P. P., Spurio R. S., Godoi D. A., Grumadas C. E. S., da Rocha M. A. (2008). Cloridrato de benzocaína na anestesia de carpas (Cyprinus carpio). Semina: Ciênc. Agrár. 29:151-156. https://doi.org/10.5433/1679-0359.2008v29n1p151
Baker T. R., Baker B. B., Johnson S. M., Sladky K. K. (2013). Comparative analgesic efficacy of morphine sulfate and butorphanol tartrate in koi (Cyprinus carpio) undergoing unilateral gonadectomy. J. Am. Vet. Med. Assoc. 243:882-890. https://doi.org/10.2460/javma.243.6.882
Barbas L. A. L., Torres M. F., da Costa B. M. P., Feitosa M. J. M., Maltez L. C., Amado L. L., ..., Hamoy M. (2021). Eugenol induces body immobilization yet evoking an increased neuronal excitability in fish during short-term baths. Aquat. Toxicol. 231:105734. https://doi.org/10.1016/j.aquatox.2020.105734
Barton B. A. (2002). Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integr. Comp. Biol. 42:517-525. https://doi.org/10.1093/icb/42.3.517
Barton B. A., Iwama G. K. (1991). Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annu. Rev. Fish Dis. 1:3-26. https://doi.org/10.1016/0959-8030(91)90019-G
Bernier N. J. (2006). The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen. Comp. Endocrinol. 146:45-55. https://doi.org/10.1016/j.ygcen.2005.11.016
Braithwaite V. A., Boulcott P. (2007). Pain perception, aversion and fear in fish. Dis. Aquat. Organ. 75:131-138. https://doi.org/10.3354/dao075131
Carroll G. L. (1999). Analgesics and pain. Vet. Clin. North Am. Small Anim. Pract. 29:701-717. https://doi.org/10.1016/S0195-5616(99)50056-9
Chandroo K. P., Duncan I. J., Moccia R. D. (2004). Can fish suffer?: perspectives on sentience, pain, fear and stress. Appl. Anim. Behav. Sci. 86:225-250. https://doi.org/10.1016/j.applanim.2004.02.004
Chatigny F., Creighton C. M., Stevens E. D. (2018). Intramuscular infiltration of a local anesthetic, lidocaine, does not result in adverse behavioural side effects in rainbow trout. Sci. Rep. 8:10250. https://doi.org/10.1038/s41598-018-28621-5
Chen J. (2011). History of pain theories. Neurosci. Bull. 27:343-350. https://doi.org/10.1007/s12264-011-0139-0
Cockrem J. F. (2013). Individual variation in glucocorticoid stress responses in animals. Gen. Comp. Endocrinol. 181:45-58. https://doi.org/10.1016/j.ygcen.2012.11.025
Corso M. N., Marques L. S., Gracia L. F., Rodrigues R. B., Barcellos L. J., Streit Jr D. P. (2019). Effects of different doses of eugenol on plasma cortisol levels and the quality of fresh and frozen-thawed sperm in South American catfish (Rhamdia quelen). Theriogenology 125:135-139. https://doi.org/10.1016/j.theriogenology.2018.10.033
Crosby T. C., Petty B. D., Hamlin H. J., Guillette Jr L. J., Hill J. E., Hartman K. H., Yanong R. P. (2010). Plasma cortisol, blood glucose, and marketability of koi transported with metomidate hydrochloride. N. Am. J. Aquac. 72:141-149. https://doi.org/10.1577/A09-023.1
Dunlop R., Laming P. (2005). Mechanoreceptive and nociceptive responses in the central nervous system of goldfish (Carassius auratus) and trout (Oncorhynchus mykiss). J. Pain 6:561-568. https://doi.org/10.1016/j.jpain.2005.02.010
Ferreira J. T., Smit G. L., Schoonbee H. J. (1979). The effect of the anaesthetic benzocaine hydrochloride on freshwater quality. Water SA 5:123-127.
Ferreira J. T., Smit G. L., Schoonbee H. J. (1981). Haematological evaluation of the anaesthetic benzocaine hydrochloride in the freshwater fish Cyprinus carpio L. J. Fish Biol. 18:291-297. https://doi.org/10.1111/j.1095-8649.1981.tb03770.x
Ferreir, J. T., Schoonbee H. J., Smit G. L. (1984a). The uptake of the anaesthetic benzocaine hydrochloride by the gills and the skin of three freshwater fish species. J. Fish Biol. 25:35-41. https://doi.org/10.1111/j.1095-8649.1984.tb04848.x
Ferreira J. T., Schoonbee H. J., Smit G. L. (1984b). The anaesthetic potency of benzocaine-hydrochloride in three freshwater fish species. S. Afri. J. Zool. 19:46-50.
Filiciotto F., Buscaino G., Buffa G., Bellante A., Maccarrone V., Mazzola S. (2012). Anaesthetic qualities of eugenol and 2-phenoxyethanol and their effect on same haematological parameters in farmed European sea bass (Dicentrarchus labrax L.). J. Anim. Vet. Adv. 11:494-502.
Gesto M., López‐Patiño M. A., Hernández J., Soengas J. L., Míguez J. M. (2015). Gradation of the stress response in rainbow trout exposed to stressors of different severity: the role of brain serotonergic and dopaminergic systems. J. Neuroendocrinol. 27:131-141. https://doi.org/10.1111/jne.12248
Harms C. A., Lewbart G. A., Swanson C. R., Kishimori J. M., Boylan S. M. (2005). Behavioral and clinical pathology changes in koi carp (Cyprinus carpio) subjected to anesthesia and surgery with and without intra-operative analgesics. Comp. Med. 55:221-226.
Hart P. J. (2023). Exploring the limits to our understanding of whether fish feel pain. J. Fish Biol. 102:1272-1280. https://doi.org/10.1111/jfb.15386
Heo G. J., Shin G. (2010). Efficacy of benzocaine as an anaesthetic for Crucian carp (Carassius carassius). Vet. Anaesth. Analg. 37:132-135. https://doi.org/10.1111/j.1467-2995.2009.00510.x
Hikasa Y., Takase K., Ogasawara T., Ogasawara S. (1986). Anesthesia and recovery with tricaine methanesulfonate, eugenol and thiopental sodium in the carp, Cyprinus carpio. Jpn. J. Vet. Sci. 48:341-351. https://doi.org/10.1292/jvms1939.48.341
Hill J. V., Forster M. E. (2004). Cardiovascular responses of Chinook salmon (Oncorhynchus tshawytscha) during rapid anaesthetic induction and recovery. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 137:167-177. https://doi.org/10.1016/j.cca.2004.01.002
IASP (2011). International Association for the Study of Pain. IASP Terminology Background – Pain. https://www.iasp-pain.org/resources/terminology/
Jensch-Junio, B. E., Pressinotti L. N., Borges J. C. S., da Silva J. R. M. C. (2006). Characterization of macrophage phagocytosis of the tropical fish Prochilodus scrofa (Steindachner, 1881). Aquaculture 251:509-515. https://doi.org/10.1016/j.aquaculture.2005.05.042
Kiessling A., Johansson D., Zahl I. H., Samuelsen O. B. (2009). Pharmacokinetics, plasma cortisol and effectiveness of benzocaine, MS-222 and isoeugenol measured in individual dorsal aorta-cannulated Atlantic salmon (Salmo salar) following bath administration. Aquaculture 286:301-308. https://doi.org/10.1016/j.aquaculture.2008.09.037
Lamont L. A., Tranquilli W. J., Grimm K. A. (2000). Physiology of pain. Vet. Clin. North Am. Small Anim. Pract. 30:703-728. https://doi.org/10.1016/S0195-5616(08)70003-2
Livingston A. (2002). Ethical issues regarding pain in animals. J. Am. Vet. Med. Assoc. 221:229-233. https://doi.org/10.2460/javma.2002.221.229
Martins T., Valentim A., Pereira N., Antunes L. M. (2019). Anaesthetics and analgesics used in adult fish for research: A review. Lab. Anim. 53:325-341. https://doi.org/10.1177/0023677218815199
Mohamed S. J. (1999). Comparative efficacy of four anesthetics on common carp Cyprinus carpio L. Acta Ichthyol. Piscat. 29:91-97.
Monteiro B. P., Lascelles B. D. X., Murrell J., Robertson S., Steagall P. V. M., Wright B. (2023). 2022 WSAVA guidelines for the recognition, assessment and treatment of pain. J. Small Anim. Pract. 64:177-254. https://doi.org/10.1111/jsap.13566
Neiffer D. L., Stamper M. A. (2009). Fish sedation, anesthesia, analgesia, and euthanasia: considerations, methods, and types of drugs. ILAR J. 50:343-360. https://doi.org/10.1093/ilar.50.4.343
Nordgreen J., Horsberg T. E., Ranheim B., Chen A. C. (2007). Somatosensory evoked potentials in the telencephalon of Atlantic salmon (Salmo salar) following galvanic stimulation of the tail. J. Comp. Physiol. A 193:1235-1242. https://doi.org/10.1007/s00359-007-0283-1
Palić D., Herolt D. M., Andreasen C. B., Menzel B. W., Roth J. A. (2006). Anesthetic efficacy of tricaine methanesulfonate, metomidate and eugenol: effects on plasma cortisol concentration and neutrophil function in fathead minnows (Pimephales promelas Rafinesque, 1820). Aquaculture 254:675-685. https://doi.org/10.1016/j.aquaculture.2005.11.004
Parker-Graham C. A., Lima K. M., Soto E. (2020). The effect of anesthetic time and concentration on blood gases, acid-base status, and electrolytes in koi (Cyprinus carpio) anesthetized with buffered tricaine methanesulfonate (MS-222). J. Zoo Wildl. Med. 51:102-109. https://doi.org/10.1638/2019-0066
Readman G. D., Owen S. F., Murrell J. C., Knowles T. G. (2013). Do fish perceive anaesthetics as aversive?. PLoS One 8(9):e73773. https://doi.org/10.1371/journal.pone.0073773
Roberts H. E., Palmeiro B., Weber III E. S. (2009). Bacterial and parasitic diseases of pet fish. Vet. Clin. North Am. Exot. Anim. Pract. 12:609-638. https://doi.org/10.1016/j.cvex.2009.06.010
Ross L. G., Ross B. (2008). Anaesthetic and Sedative Techniques for Aquatic Animals. Oxford, UK: Blackwell Publishing Inc.
Schlüssel M. M., dos Anjos L. A., de Vasconcellos M. T. L., Kac G. (2008). Reference values of handgrip dynamometry of healthy adults: a population-based study. Clin. Nutr. 27:601-607. https://doi.org/10.1016/j.clnu.2008.04.004
Sherrington C. S. (1900). Cutaneous sensations. In: Schafer, E. A. (ed): Textbook of Physiology. London: Pentland.
Sherrington C. S. (1906). The Integrative Action of the Nervous System. New Haven: Yale University Press.
Sneddon L. U., Braithwaite V. A., Gentle, M. J. (2003a). Do fishes have nociceptors? Evidence for the evolution of a vertebrate sensory system. Proc. R. Soc. Lond. B Biol Sci. 270:1115-1121. https://doi.org/10.1098/rspb.2003.2349
Sneddon L. U., Braithwaite V. A., Gentle M. J. (2003b). Novel object test: examining nociception and fear in the rainbow trout. J. Pain 4:431-440. https://doi.org/10.1067/S1526-5900(03)00717-X
Sneddon L. U. (2012). Clinical anesthesia and analgesia in fish. J. Exot. Pet Med. 21:32-43. https://doi.org/10.1053/j.jepm.2011.11.009
Tort L. (2011). Stress and immune modulation in fish. Dev. Comp. Immunol. 35:1366-1375. https://doi.org/10.1016/j.dci.2011.07.002
Tripathi N. K., Latimer K. S., Burnley V. V. (2004). Hematologic reference intervals for koi (Cyprinus carpio), including blood cell morphology, cytochemistry, and ultrastructure. Vet. Clin. Pathol. 33:74-83. https://doi.org/10.1111/j.1939-165X.2004.tb00353.x
Velisek J., Svobodova Z., Piackova V., Groch L., Nepejchalova L. (2005). Effects of clove oil anesthesia on common carp (Cyprinus carpio L.). Vet. Med. (Praha) 50:269-275.
Weber E. S. (2011). Fish analgesia: pain, stress, fear aversion, or nociception?. Vet. Clin. North Am. Exot. Anim. Pract. 14:21-32. https://doi.org/10.1016/j.cvex.2010.09.002
Weber E. P., Weisse C., Schwarz T., Innis C., Klide A. M. (2009). Anesthesia, diagnostic imaging, and surgery of fish. Compend. Contin. Educ. Vet. (Yardley, PA) 31:E11-E11.
Wendelaar Bonga S. E. (1997). The stress response in fish. Physiol. Rev. 77:591-625. https://doi.org/10.1152/physrev.1997.77.3.591
Xu Y., Jiao Y., Yang J., Tan A., Ou D., Song X., Lv S. (2023). The pharmacokinetic and residue depletion study of eugenol in carp (Cyprinus carpio). Front. Vet. Sci. 9:1097812. https://doi.org/10.3389/fvets.2022.1097812
Yue S., Moccia R. D., Duncan I. J. H. (2004). Investigating fear in domestic rainbow trout, Oncorhynchus mykiss, using an avoidance learning task. Applied Anim. Behav. Sci. 87:343-354. https://doi.org/10.1016/j.applanim.2004.01.004
Yue S., Duncan I. J., Moccia R. D. (2008). Investigating fear in rainbow trout (Oncorhynchus mykiss) using the conditioned-suppression paradigm. J. Appl. Anim. Welf. Sci. 11:14-27. https://doi.org/10.1080/10888700701729106
Zahl I. H., Kiessling A., Samuelsen O. B., Hansen M. K. (2009). Anesthesia of Atlantic cod (Gadus morhua) - effect of pre-anaesthetic sedation, and importance of body weight, temperature and stress. Aquaculture 295:52-59. https://doi.org/10.1016/j.aquaculture.2009.06.019
Zahl I. H., Kiessling A., Samuelsen O. B., Hansen M. K. (2011). Anaesthesia of Atlantic halibut (Hippoglossus hippoglossus) Effect of pre‐anaesthetic sedation, and importance of body weight and water temperature. Aquac. Res. 42:1235-1245. https://doi.org/10.1111/j.1365-2109.2010.02711.x
Zahl I. H., Samuelsen O., Kiessling A. (2012). Anaesthesia of farmed fish: implications for welfare. Fish Physiol. Biochem. 38:201-218. https://doi.org/10.1007/s10695-011-9565-1
Published
Issue
Section
License
Copyright (c) 2024 André Luiz Veiga Conrado andreconrado, Renata Stecca Iunes, Matheus Santos Costa, Rogério Oliveira Faleiros, Isabella Cristina Bordon, José Roberto Machado Cunha da Silva

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

