Productive variables of Lettuce (Lactuca sativa) – Chard (Beta vulgaris) y Tilapia (Orechromis niloticus) in different aquaponic systems.
Productive variables of Lettuce - Chard and Tilapia in aquaponics
Keywords:
Aquaculture, fish, hydroponics, productivityAbstract
Currently, most aquaculture and agricultural practices, despite all the benefits they produce, also generate negative environmental impacts, which has forced the generation of environmentally friendly alternatives. Aquaponics is a sustainable system that allows the simultaneous cultivation of aquatic plants and animals in the same space. It is an environmentally friendly option since it is based on a closed water recirculation and bioremediation system. Different hydroponic subsystems are used in an aquaponic system, but there is very limited information on which one is the most efficient, so three aquaponic prototypes were built with different hydroponic fractions: Suspended Root (SR), Flooded Substrate (FS) and Nutrient Film Technique (NFT) to compare their productivity in the cultivation of lettuce - chard with tilapia. The hydroponic fraction of flooded substrate (FH-SI) showed the highest results in the productivity indicators in both plant species, however, no significant differences were found in the growth and survival of tilapia. Temperature (°C), electrical conductivity (dS/m), dissolved oxygen concentration (mg.L-1), pH, nitrites (mg.L-1), nitrates (mg.L-1) and ammonium (mg.L-1) were recorded in the aquaculture fraction, biofilters and reservoir, the values were maintained within the tolerable values for the cultivation of the species in all systems and, in most of them, without significant differences between them.
Downloads
References
Bautista-Olivas A.L., Fernández D.R., Álvarez-Chávez C.R., Sánchez-Mexia A.C., Mendoza-Cariño M., García-Cabello K. (2021). Productividad de lechuga (Lactuca sativa L.) en acuaponía e hidroponía. European Scientific Journal 17(21):283-304 https://doi.org/10.19044/esj.2021.v17n21p283
Costello C., Cao L., Gelcich S., Cisneros-Mata M.A., Free C.M., Froehlich H.E., Golden C.D., Ishimura G., Maier J., Macadam-Somer I., Mangin T., Melnychuk M.C., Miyahara M., de Moor C., Naylor R., Nøstbakken L., Ojea E., O’Reilly E., Parma A. M., Lubchenco J. (2020). The future of food from the sea. Nature 588:95-100. https://doi.org/10.1038/s41586-020-2616-y
Danaher J.J., Shultz R.C., Rakocy J.E., Bailey D.S. (2013). Alternative solids removal for warm water recirculating raft aquaponic systems. Journal of World Aquaculture Society 44:374-383. https://doi.org/10.1111/jwas.12040
De Graaf G. (2004). Optimization of the pond rearing of Nile Tilapia (Oreochromis niloticus niloticus L.) the impact of stunting processes and recruitment control. Tesis de posgrado, Wageniningen University. Netherlands. http://www.nefisco.org/downloads /PHD%20de% 20Graaf.pdf
Delaide B., Goddek S., Gott J., Soyeurt H., Jijakli, M. (2016). Lettuce (Lactuca sativa L. var. Sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 8(10):467. https://doi.org/10.3390/w8100467
Enduta A., Jusoh A., Ali N., Wan Nik W.B. (2011). Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalination and Water Treatment 32:422-430. https://doi.org/10.5004/dwt.2011.276
Flores-Aguilar P., García T.J.F., Martínez S.I. (2021). Acuaponía: Una alternativa versátil e integral en la producción de alimentos para el entorno mexicano. Digital Ciencia 14: 43-53. https://revistas.uaq.mx/index.php/ciencia/article/view/101
Gallardo-Collí A., Hernández-Vergara M.P., Pérez-Rostro C.I., Ramírez-Gutiérrez S.C. (2014). Biculture of Tilapia (Oreochromis niloticus) and crayfish (Procambarus acanthophorus) and production of green corn fodder (Zea mays) in an aquaponic system. Global Advanced Research Journal of Agricultural Science 3(8): 233-244. https://beta.garj.org/garjas/content/2014/August.htm
Garrido W.E.R., Guevara R.C.P., Martínez L.M. (2020). Manual de producción del sistema acuapónico del Centro Agroempresarial y Acuícola. Servicio Nacional de Aprendizaje SENA. Colombia.
Gislerød H.R., Adams P. (1983). Diurnal variations in the oxygen requirement of content and recirculating acid nutrient solutions and in the uptake of water and potassium by cucumber and tomato plants. Scientia Horticulturae 21(4):311-321. https://doi.org/10.1016/0304-4238(83)90121-8
Hlophe P.A., Nxumalo K.A., Oseni T.O., Masarirambi M.T., Wahome P.K., Shongwe V.D. (2019). Effects of different media on the growth and yield of Swiss chard (Beta vulgaris var. cicla) grown in hydroponics. Horticulture International Journal 3(3): 147-151. https://doi.org//10.15406/hij.2019.03.0012
Holguín-Peña R.J., Ruiz-Juárez D., Medina-Hernandez D. (2023). Producción de acelga (Beta vulgaris var. cicla L.) con efluente del cultivo de robalo (Centropomus viridis) en un sistema acuapónico. Terra Latinoamericana 41:1-11. https://doi.org/10.28940/terra.v41i 0.1683
Inosako K., Troyo-Diéguez E., Saito T., Lucero Vega G. (2020). Manual Técnico para Cultivo a Cielo Abierto usando Agua Residual de Acuaponia. Manual Técnico Sobre Acuaponía Combinada con Cultivo Cielo Abierto Adaptado en Zonas Áridas. Cibnor, México. https://www.jica.go.jp/Resource/mexico/espanol/activities/c8h0vm00007f8s9j-att/manual_sp.pdf
Juárez-Carballo L.E. (2016). Evaluación de los parámetros biológicos de la tilapia gris Oreochromis niloticus mediante la implementación de un sistema acuapónico. Tesis de maestría, Universidad Veracruzana. Veracruz, México https://www.uv.mx/pozarica/egia/files/2017/05/Luis-EnriqueJuarez.pdf
Lennard W.A., Leonard B.V. (2006). A comparison of three different hydroponic subsystems (gravel bed, floating and nutrient film technique) in an Aquaponic test system. Aquaculture International 14:539–550. https://doi.org/10.1007/s10499-006-9053-2
Losordo T.M., Masser M.P., Rakocy J. (1999). Recirculating aquaculture tank production systems. Southern Regional Aquaculture Center. Texas A & M University, Texas, USA.
Meyer D. (2004). Introducción a la Acuacultura. Escuela Agrícola Panamericana EAP Zamorano. Honduras.
Palm H., Knaus U., Appelbaum S., Goddek S., Strauch S., Vermeulen T., Haïssam M., Kotzen B. (2018). Towards commercial aquaponics: a review of systems, designs, scales and nomenclature. Aquaculture International 26:813-842. https://doi.org/10.1007/s10499-018-0249-z
Pandal-Baños E. (2019). Evaluación de parámetros productivos y composición química corporal de la Tilapia gris del Nilo (Oreochromis niloticus) durante el periodo de engorda bajo sistemas de cultivo tradicional y con tecnología biofloc. Tesis de pregrado, Universidad nacional autónoma de México. https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000796829
Pilco-Vergaray J. (2015). Comportamiento productivo de dos densidades de siembra de Piaractus brachypomus “paco” en un sistema acuapónico superintensivo, en el iesppb. Tesis de pregado. Universidad Nacional Intercultural de la Amazonia. https://alicia.concytec.gob.pe/vufind/Record/UNIA_bf6aa0508879e4627ea5dd3fab105cc4
Rakocy J.E., Losordo T.M., Masser M.P. (2006). Recirculating Aquaculture tank production systems: Aquaponics-integrating fish and plant culture. Southern Regional Aquaculture Center 454:1-8. https://www.researchgate.net/publication/284496499_Recirculating_ aquaculture_tank_production_systems_Aquaponics-Integrating_fish_and_plant_culture
Ramírez-Ballesteros M. (2013). Evaluación del crecimiento de tilapia, acocil y lechuga en un sistema de recirculación acuapónico en condiciones de laboratorio. Tesis de pregrado, Universidad Nacional Autónoma de México. https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000701607
Ramos-Sotelo H., Pérez-Ramírez I.F., Figueroa-Pérez M.G., Fierro-Sañudo J.F., León-Cañedo J.A., Alarcón-Silvas S.G., Páez-Osuna F. (2021). Metabolite profiling and antioxidant capacity of lettuce Lactuca sativa var. longifolia grown in aquaponic system irrigated with shrimp effluents. Biotecnia 23(3):101-108. https://doi.org/10.18633/biotecnia.v23i 3.1454
Ruiz-Velazco J.M.J., de La Paz-Rodríguez G., Hernandez-Llamas A., Estrada-Pérez N. (2024). Producción de acelga (Beta vulgaris var. ciclaL.) en sistemas hidropónicos y acuapónicos. Ecosistemas y Recursos Agropecuarios 11(1):1-17. https://doi.org/10.191 36/era.a11n1.3866
Sádaba S., Uribarri A., Aguado G., del Castillo J., Astiz M. (2010). Acelga en invernadero. Navarra Agraria 181:23-27. https://www.navarraagraria.com/categories/item/789-acelga-en-invernadero
Somerville C., Cohen M., Pantanella E., Stankus A., Lovatelli A. (2022). Producción de alimentos en acuaponía a pequeña escala. Cultivo integral de peces y plantas. FAO Documento Técnico de Pesca y Acuicultura No. 589. FAO, Roma. https://doi.org/10.4060/i4021es
Tyson R.V., Treadwell D.D., Simonne E.H. (2011). Opportunities and Challenges to Sustainability in Aquaponic Systems. HortTechnology hortte 21(1): 6-13. https://doi.org/10.21273/HORTTECH.21.1.6
Ube-Troya R.J. (2014). Adaptación y comportamiento agronómico de dos variedades de acelga (Beta vulgaris), sembradas mediante sistema hidropónico de raíz flotante, en la zona de Babahoyo. Tesis de pregrado. Universidad Técnica de Babahoyo, Babahoyo, Ecuador. http://dspace.utb.edu.ec/handle/49000/683
Valdez-Martínez D. (2024). Evaluación del desempeño productivo de un policultivo de Tilapia (Oreochromis niloticus) y Langostino (Macrobrachium tenellum) en un sistema acuapónico de Lechuga (Lactuca sativa), como estrategia sustentable de producción a pequeña escala. Tesis doctoral. Universidad Autónoma de Occidente. Sinaloa, México. https://uadeo.mx/posgrado/doctorado/sustentabilidad/repositorio-de-tesis/
Venegas-González J., Méndez-Inocencio C., Martínez-Mendoza E.K., Ceja-Torres, L.F. y Rodríguez-Torres M.D. (2019). Producción orgánica de Beta vulgaris subespecie cicla con inoculantes microbianos. Biotecnia 21(3):121-126. https://doi.org/10.18633/biotecnia.v21i3.1043
Xiaojing Liu, Yan Wang, Haiqin Liu, Yingying Zhang, Qing Zhou, Xuezheng Wen, Wenjing Guo, Zhiyong Zhang. (2024). A systematic review on aquaculture wastewater: Pollutants, impacts, and treatment technology. Environmental Research 262,1: 119793. https://doi.org/10.1016/j.envres.2024.119793
Zahoor I., Mushtaq A. (2023). Water Pollution from Agricultural Activities: A Critical Global Review. International Journal of Chemical and Biochemical Sciences 23(1):164-176. https://www.iscientific.org/wp-content/uploads/2023/05/19-IJCBS-23-23-24.pdf
Zar J. (1999). Biostatistical analysis, 4th Ed. Prentice-Hall, Upper Sadd. River, N.J. 718 p.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Pedro Hernández Sandoval, Martha Michey Cruz Cervantes, Silvia Beatriz Sánchez Soto, David Valdez Martínez, Gabriel Herrera Rodríguez

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

