Effect of Artemia sp. enriched with fatty acids on the performance of Penaeus vannamei postlarvae
Keywords:
Aquaculture , larval nutrition , lipid , carbohydrate , growth , survivalAbstract
The absence of highly unsaturated fatty acids (HUFAs) in the diet of Pacific white shrimp (Penaeus vannamei) alters its development, decreases its immunological capacity, and reduces survival during the initial stages of larval culture, which compromises the bioeconomic efficiency of the system by increasing susceptibility to infectious agents. This study evaluated the effect of providing Artemia sp. enriched with fatty acids (AEAG) on productive and compositional indicators in post-larval Penaeus vannamei. A total of 45 million nauplii were used in 18 experimental units, applying two treatments: (1) feeding with AEAG and (2) Artemia sp. non-enriched (control), during a culture cycle of 18 days. Yield per ton, specific growth rate (SGR), proximal chemical composition, fatty acid profile, and survival rate were calculated. Postlarvae treated with AEAG showed increases in yield (+26.90%), SGR (+13.64%), and survival (+21.40%); together with a biochemical pattern characterized by lower lipid content (–22.19%) and a higher proportion of carbohydrates (+12.02%) and proteins (+1.30%). These findings demonstrate a metabolic optimization associated with increased efficiency in energy use during the larval phase under controlled conditions, thereby improving the production and survival of P. vannamei postlarvae.
Downloads
References
Adloo M., Agh N., Salarzade A., Bahri A. (2020). The effect of lipid-enriched Artemia franciscana on reproductive performance of broodstock and larval quality of Pacific white shrimp Litopenaeus vannamei. Iranian Journal of Fisheries Sciences 19(4):1928-1943. https://doi.org/10.22092/ijfs.2019.119528
Akbary P., Amiri, J. (2023). Effect of Litopenaeus vannamei enriched with Chaetoceros sp. Microalgae on growth performance and body chemical composition of Litopenaeus vannamei. Journal of Aquaculture Sciences 11(2):74-84. https://www.aquaculturesciences.ir/article_187106_en.html
AOAC International. (1995a). Official Method 942.05: Ash of animal feed. In: Official methods of analysis of AOAC International.
AOAC International. (1995b). Official Method 984.13: Protein (crude) in animal feed—Copper catalyst Kjeldahl method. In: Official methods of analysis of AOAC International.
AOAC International. (1996). Official Method 930.15: Loss on drying (moisture) for feeds (at 135°C for 2 hours). In: Official methods of analysis of AOAC International.
AOCS (American Oil Chemists’ Society). (2017). Official Method Ce 1b-89: Fatty acid composition of marine oils by GLC. In: Official methods and recommended practices of the AOCS (8th ed.). AOCS Press.
Felix S., Menaga M., Mohana Sundari C., Charulatha M., Neelakandan P. (2021). A study on the fatty acid enrichment of Artemia franciscana for the healthy rearing of Penaeus vannamei post-larvae. Indian Journal of Animal Research 55(3):295–302. https://doi.org/10.18805/IJAR.B-3956
Folch J., Lees M., Sloane-Stanley G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry 226(1):497–509. https://doi.org/10.1016/S0021-9258(18)64849-5
Gao C., Yang J., Hao T., Li J., Sun J. (2021). Reconstruction of Litopenaeus vannamei Genome-Scale Metabolic Network Model and Nutritional Requirements Analysis of Different Shrimp Commercial Varieties. Journal Frontiers in Genetics 12:6588109. https://doi.org/10.3389/fgene.2021.658109
Joshua W. J., Kamarudin M. S., Ikhsan N., Yusoff F. M., Zulperi Z. (2022). Development of enriched Artemia and Moina in larviculture of fish and crustaceans: A review. Latin American Journal of Aquatic Research 50(2):144–157. https://doi.org/10.3856/vol50-issue2-fulltext-2840
Lavens P., Sorgeloos P. (1996). Manual on the production and use of live food for aquaculture. FAO Fisheries Technical Paper No. 361. FAO, Rome. https://www.fao.org/3/w3732e/w3732e00.htm
Martínez-Soler M., Courtois de Vicose G., Roo-Filgueira J., Zambrano-Sánchez J., Yugcha-Oñate E., Montachana-Chimborazo M., Intriago-Díaz W., Reyes-Abad E., Afonso-López J. M. (2023). Effect of HUFA in enriched Artemia on growth performance, biochemical and fatty acid content, and hepatopancreatic features of Penaeus vannamei postlarvae from a commercial shrimp hatchery in Santa Elena, Ecuador. Aquaculture Nutrition 2023(1):7343070. https://doi.org/10.1155/2023/7343070
Montalvo G., Morones R., Barral-Pintos X., Arenas M., Barreto A., Escalante K., Cuzon G., Gaxiola G. (2022). Metabolic, antioxidant, and immune response of broodstock males of Penaeus brasiliensis Latreille, 1817 fed diets supplemented by vitamin C. Journal of Crustacean Biology 42(4):1–12. https://doi.org/10.1093/jcbiol/ruac056
Oliveira B., Lima A., Silva J., Sousa T., Dantas M., Lacerda O., Diniz L., Romão R. (2023). Penaeus vannamei post-larvae growth and economic aspects after hatchery with artemia replacement by commercial feeds. Aquaculture International 31(1):261–272. https://doi.org/10.1007/s10499-022-00973-w
Paz P., López A., Cárdenas L. (2020). Replacement of Artemia spp. with zooplankton in Penaeus vannamei larviculture. Latin American Journal of Aquatic Research 48(4):700–704. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-560X2020000400700
Porto-Fragozo P., Rodríguez-Forero A. (2023). Fuentes proteicas alternas como sustituto parcial de la harina de pescado en las formulaciones nutricionales del cultivo de camarón (Penaeus vannamei). Orinoquía 27(2):e-767. https://doi.org/10.22579/20112629.767
Putra D., Trisyahdar T., Dewiyanti I., Muhammadar A. (2018). Effect of enhanced Artemia with gamat emulsion on growth performance and survival rate of white shrimp Litopenaeus vannamei larvae. IOP Conference Series: Earth and Environmental Science 216:012005. https://iopscience.iop.org/article/10.1088/1755-1315/216/1/012005
Ruiz-Monroy D., Torres-Jaramillo R. (2018). Evaluación de eficiencia en dos sistemas de alimentación automática para engorde de camarón blanco (Litopenaeus vannamei) en Choluteca, Honduras. Tesis de pregrado, Zamorano, Escuela Agrícola Panamericana, Honduras. https://bdigital.zamorano.edu/items/dff85272-9b58-409c-b731-75a9d63969da
Samaee S. M., Estévez A. (2025). Plant oils induce fatty acid plasticity in Artemia.–A comparison among newly hatched, starved, and enriched nauplii. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 279:111117. https://doi.org/10.1016/j.cbpb.2025.111117
Skretting. (s.f.). Manual de Larvicultura. https://www.skretting.com/siteassets/local-folders/ecuador/libreria-skretting/manual-larvicultura-skretting.pdf?v=496820
Sokal R. R., Rohlf F. J. (2012). Biometry: The principles and practice of statistics in biological research, 4th edn. W. H. Freeman.
Villarroel C. (2024). Comparación de las dietas a base de alimentación natural y comercial en el rendimiento reproductivo de hembras de camarón, Litopenaeus vannamei. Tesis de pregrado, Universidad Estatal de la Península de Santa Elena, Santa Elena, Ecuador. https://repositorio.upse.edu.ec/handle/46000/11894
Zhu W., Dong R., Ge L., Yang Q., Lu N., Li H., Feng Z. (2023). Effects of dietary n-6 polyunsaturated fatty acids (PUFA) composition on growth performances and non-specific immunity in Pacific white shrimp (Litopenaeus vannamei). Aquaculture Reports 28:101436. https://doi.org/10.1016/j.aqrep.2022.101436
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Melany Dayana Anaguano Quijia, Yahira Licia Piedrahita Falquez

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

