Cellular and immunological biomarkers in Pacific oyster Crassostrea gigas (Thunberg, 1793) reared in a tropical estuary during rainy season

Authors

  • Mariela Carolina Loján Avellán Programa de Maestría en Acuicultura, Instituto de Postgrado, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador. Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura y Pesca, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador
  • Edgar Zapata Vívenes Programa de Maestría en Acuicultura, Instituto de Postgrado, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador. Grupo de Investigación en Biología y Cultivos de Equinodermos (INBICEQ). Departamento de Acuicultura y Pesca, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador Departamento de Biología, Escuela de Ciencias, Núcleo de Sucre, Universidad de Oriente, Venezuela. http://orcid.org/0000-0003-3720-5416
  • César Lodeiros Seijo Programa de Maestría en Acuicultura, Instituto de Postgrado, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador. Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura y Pesca, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador. Instituto Oceanográfico de Venezuela, Universidad de Oriente, Cumaná, Venezuela. http://orcid.org/0000-0001-9598-2235
  • Luis Manuel Treviño Programa de Maestría en Acuicultura, Instituto de Postgrado, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador. Grupo de Investigación en Biología y Cultivo de Moluscos, Departamento de Acuicultura y Pesca, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador http://orcid.org/0000-0002-7955-6161

DOI:

https://doi.org/10.33936/la_tecnica.v0i0.3065

Keywords:

catalase, growth, stress, phagocytosis, hemocytes, neutral red retention

Abstract

Tropical estuaries have been considered excellent environments to develop the oyster culture Crassostrea gigas; however, there are limiting factors during the rainy season that modulate changes in physiological and cellular responses, which affect oyster survival. In this study, cellular and immunological biomarkers, growth and survival of C. gigas were evaluated in suspending culture in the estuary of the Chone River (Ecuador), from December 2019 to March 2020. Environmental parameters (pluviosity, salinity and temperature) and in vitro cellular-immunological biomarkers (viability, count of hemocytes, phagocytosis and lysosomal membrane stability) and catalase activity from coelomic fluid were determined. The monthly average of precipitation showed an increase since January (78,8 mm), with a maximum value in February (174,8 mm), decreasing progressively in March (53,2 mm). The temperature varied between 26 and 32° C, the salinity decreased from 32 ups in December to 10-14 ups in February and March respectively. The organisms evaluated during February and March showed a reduction (4-5%) in surrounding hemocyte viability, and more than 14% showed destabilization of the lysosomal membranes. Phagocyte number increased and catalase activity decreased during these months. Oysters showed a low daily growth rate (0,01 mm/day), and survival decreased to 64% (March). The cellular-immune system in reared oysters is modulated by low salinity and increased water surface temperature, suggesting a direct relationship with growth and survival. The cellular and immunological biomarkers evaluated are recommended as indices of physiological condition in C. gigas under culture.

Keywords: catalase; growth; stress; phagocytosis; hemocytes; neutral red retention

Downloads

Download data is not yet available.

References

Aebi, H. (1984). [13] Catalase in vitro. In Methods in Enzymology: Vol. 105. Oxygen Radicals in Biological Systems (pp. 121–126). Academic Press. https://doi.org/https://doi.org/10.1016/S0076-6879(84)05016-3
Adzigbli, L., Hao, R., Jiao, Y., Deng, Y., Du, X. & Huang, R. (2019). Immune response of pearl oysters to stress and diseases. Reviews in Aquaculture, 12. https://doi.org/10.1111/raq.12329
Alfonso-Prieto, M., Biarnés, X., Vidossich, P., & Rovira, C. (2009). The Molecular Mechanism of the Catalase Reaction. Journal of the American Chemical Society, 131, 11751–11761. https://doi.org/10.1021/ja9018572
Allam, B., & Raftos, D. (2015). Immune responses to infectious diseases in bivalves. Journal of Invertebrate Pathology, 131, 121–136. https://doi.org/https://doi.org/10.1016/j.jip.2015.05.005
Al-Subiai, S. N., Jha, A. N., & Moody, A. J. (2008). Contamination of bivalve haemolymph samples by adductor muscle components: implications for biomarker studies. Ecotoxicology, 18(3), 334. https://doi.org/10.1007/s10646-008-0287-9
Arriaga, L., Montaño, M., & Vásconez, J. (1999). Integrated management perspectives of the Bahía de Caráquez zone and Chone River estuary, Ecuador. Ocean & Coastal Management, 42(2), 229–241. https://doi.org/https://doi.org/10.1016/S0964-5691(98)00055-6
Bussell, J. A., Gidman, E. A., Causton, D. R., Gwynn-Jones, D., Malham, S. K., Jones, M. L. M., … Seed, R. (2008). Changes in the immune response and metabolic fingerprint of the mussel, Mytilus edulis (Linnaeus) in response to lowered salinity and physical stress. Journal of Experimental Marine Biology and Ecology, 358(1), 78–85. doi:10.1016/j.jembe.2008.01.018
Carvajal Carvajal, C. Especies reactivas del oxígeno: formación, función y estrés oxidativo. Med. leg. Costa Rica [online]. 2019, vol.36, n.1, pp.91-100. https://www.scielo.sa.cr/scielo.php?script=sci_abstract&pid=S1409-00152019000100091&lng=en&nrm=iso&tlng=es
Chainy, G., Paital, B. & Dandapat, J. (2016). An Overview of seasonal changes in oxidative stress and antioxidant defense parameters in some invertebrate and vertebrate species. Scientifica, 2016. https://doi.org/10.1155/2016/6126570
Chan, C. Y., & Wang, W.-X. (2019). Biomarker responses in oysters Crassostrea hongkongensis in relation to metal contamination patterns in the Pearl River Estuary, southern China. Environmental Pollution, 251, 264–276. https://doi.org/https://doi.org/10.1016/j.envpol.2019.04.140
Cheng, T. C. (1981). Bivalves. In: Ratcliffe NA, Rowley AF, editors. Invertebrate Blood Cells 729 New York Academic Press; 1981, p. 233-300.
Cho, S.-M., & Jeong, W.-G. (2005). Spawning impact on lysosomal stability of the Pacific Oyster, Crassostrea gigas. Aquaculture, 244(1), 383–387. https://doi.org/https://doi.org/10.1016/j.aquaculture.2004.12.013
Domínguez, R., Vázquez, E., Woodin, S. A., Wethey, D. S., Peteiro, L. G., Macho, G., & Olabarria, C. (2020). Sublethal responses of four commercially important bivalves to low salinity. Ecological Indicators, 111, 106031. https://doi.org/https://doi.org/10.1016/j.ecolind.2019.106031
FAO (2021). Fishery statistical collections. Global Aquaculture production. In FAO Fisheries and Aquaculture Department. Retrieved from http://www.fao.org/fishery/statistics/global-aquacultureproduction/enwww.fao.org/fishery/statistics/software/fishstatj/es
Fisher, W. S., Chintala, M. M., & Moline, M. A. (1989). Annual variation of estuarine and oceanic oyster Crassostrea virginica Gmelin hemocyte capacity. Journal of Experimental Marine Biology and Ecology, 127(2), 105–120. https://doi.org/https://doi.org/10.1016/0022-0981(89)90178-0
Fisher, W. S., & Tamplin, M. (1988). Environmental Influence on Activities and Foreign-Particle Binding by Hemocytes of American Oysters, Crassostrea virginica. Canadian Journal of Fisheries and Aquatic Sciences, 45(7), 1309–1315. https://doi.org/10.1139/f88-153
Gagnaire, B., Frouin, H., Moreau, K., Thomas-Guyon, H., & Renault, T. (2006). Effects of temperature and salinity on haemocyte activities of the Pacific oyster, Crassostrea gigas (Thunberg). Fish & Shellfish Immunology, 20(4), 536–547. https://doi.org/https://doi.org/10.1016/j.fsi.2005.07.003
Gagnaire, B., Soletchnik, P., Faury, N., Kerdudou, N., Moine, O. Le, & Renault, T. (2007). Analysis of hemocyte parameters in Pacific oysters, Crassostrea gigas, reared in the field — Comparison of hatchery diploids and diploids from natural beds. Aquaculture, 264(1), 449–456. https://doi.org/https://doi.org/10.1016/j.aquaculture.2006.12.041
Gosling, E. (2003). Bivalve Molluscs: Biology, Ecology and Culture. Wiley-Blackwell.
Green, T. J., Vergnes, A., Montagnani, C. & de Lorgeril, J. (2016). Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections. Veterinary Research, 47(1). doi:10.1186/s13567-016-0356-7
Guo, X., He, Y., Zhang, L., Lelong, C. & Jouaux, A. (2015). Immune and stress responses in oysters with insights on adaptation. Fish & Shellfish Immunology, 46(1), 107–119. doi: 10.1016/j.fsi.2015.05.018
Hauton, C., Hawkins, L. E., & Hutchinson, S. (1998). The use of the neutral red retention assay to examine the effects of temperature and salinity on haemocytes of the European flat oyster Ostrea edulis (L). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 119(4), 619–623. doi: 10.1016/S0305-0491(98)00036-4
Hauton, C., Hawkins, L. E., & Hutchinson, S. (2001). Response of haemocyte lysosomes to bacterial inoculation in the oysters Ostrea edulis L. and Crassostrea gigas (Thunberg) and the scallop Pecten maximus (L.). Fish & Shellfish Immunology, 11(2), 143–153. doi:10.1006/fsim.2000.0301
Heilmayer, Olaf, Julian Digialleonardo, Lianfen Qian, and Guritno Roesijadi. 2008. “Stress Tolerance of a Subtropical Crassostrea Virginica Population to the Combined Effects of Temperature and Salinity.” Estuarine, Coastal and Shelf Science 79(1):179–85. doi: https://doi.org/10.1016/j.ecss.2008.03.022.
Liu, X., & Wang, W.-X. (2016). Time changes in biomarker responses in two species of oyster transplanted into a metal contaminated estuary. Science of The Total Environment, 544, 281–290. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.11.120
Lodeiros, C., Rodríguez-Pesantes, D., Márquez, A., Revilla, J., Chávez-Villalba, J., & Sonnenholzner, S. (2018). Suspended cultivation of the Pacific oyster Crassostrea gigas in the Eastern Tropical Pacific. Aquaculture International, 26(1), 337–347. https://doi.org/10.1007/s10499-017-0217-z
Lowe, D., Moore, M., & Evans. (1992). Contaminant impact on interactions of molecular probes with lysosomes in living hepatocytes from dab Limanda. Marine Ecology Progress Series, 91. https://doi.org/10.3354/meps091135
Matozzo, V., Monari, M., Foschi, J., Serrazanetti, G. P., Cattani, O. & Marin, M. G. (2007). Effects of salinity on the clam Chamelea gallina. Part I: alterations in immune responses. Marine Biology, 151(3), 1051–1058. https://doi.org/10.1007/s00227-006-0543-6
Melo, E. M. C., Sühnel, S., Oliveira, A. C. S. de, Lopes, B. de O., Bachi, G. C., & De Melo, C. M. R. (2020). Growth, mortality and reproductive traits of diploid and triploid Pacific oysters (Crassostrea gigas, Thunberg, 1793) in Southern Brazil. Aquaculture Research, 51(9), 3631–3640. https://doi.org/10.1111/are.14713
Mondol, M. R., Kim, C.-W., Kang, C.-K., Park, S. R., Noseworthy, R. G., & Choi, K.-S. (2016). Growth and reproduction of early grow-out hardened juvenile Pacific oysters, Crassostrea gigas in Gamakman Bay, off the south coast of Korea. Aquaculture, 463, 224–233. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.05.047
Monari, M., Matozzo V., Foschi J., Cattani O., Serrazanetti G. P. & Marin M. G.. 2007. Effects of high temperatures on functional responses of haemocytes in the clam Chamelea gallina.” Fish & Shellfish Immunology 22(1):98–114. doi: https://doi.org/10.1016/j.fsi.2006.03.016.
Moore, M.N., 1980. Cytochemical determination of cellular responses to environmental stressors in marine organisms. Rapp. P.-V. Réun. Cons. Int. Explor. Mer. 170, 7–15.
Nusetti, O., Marcano, L., Zapata Vivenes, E., Esclapés, M., Nusetti, S., & Lodeiros, C. (2004). Respuestas inmunológicas y de enzimas antioxidantes en la ostra perla Pinctada imbricata (Mollusca: Pteridae) expuesta a niveles subletales de fuel oil no6. Interciencia, 29, 324–328.
Park, K.-I., Donaghy, L., Kang, H.-S., Hong, H.-K., Kim, Y.-O., & Choi, K.-S. (2012). Assessment of immune parameters of manila clam Ruditapes philippinarum in different physiological conditions using flow cytometry. Ocean Science Journal, 47(1), 19–26. doi:10.1007/s12601-012-0002-x
Perrigault, M., Dahl, S. F., Espinosa, E. P., & Allam, B. (2012). Effects of salinity on hard clam (Mercenaria mercenaria) defense parameters and QPX disease dynamics. Journal of Invertebrate Pathology, 110(1), 73–82. https://doi.org/https://doi.org/10.1016/j.jip.2012.02.004
Pourmozaffar, S., Tamadoni Jahromi, S., Rameshi, H., Sadeghi, A., Bagheri, T., Behzadi, S., Gozari, M., Zahedi, M. R. & Abrari Lazarjani, S. (2020). The role of salinity in physiological responses of bivalves. Reviews in Aquaculture, 12(3), 1548–1566. https://doi.org/10.1111/raq.12397
Rahman, M. A., Henderson, S., Miller-Ezzy, P., Li, X. X., & Qin, J. G. (2019). Immune response to temperature stress in three bivalve species: Pacific oyster Crassostrea gigas, Mediterranean mussel Mytilus galloprovincialis and mud cockle Katelysia rhytiphora. Fish & Shellfish Immunology, 86, 868–874. https://doi.org/https://doi.org/10.1016/j.fsi.2018.12.017
Reynaga‐Franco, F., Grijalva‐Chon, J., Castro‐Longoria, R., Barraza‐Guardado, R., Arreola‐Lizárraga, J., & Chávez‐Villalba, J. (2018). Biological performance of Crassostrea gigas stocks produced at different hatcheries and cultivated under same environmental conditions. Aquaculture Research. doi:10.1111/are.13940
Ringwood, A., Hoguet, J., Keppler, C., Gielazyn, M., Ward, B., & Rourk, A. (2003). Cellular Biomarkers (Lysosomal Destabilization, Glutathione & Lipid Peroxidation) in Three Common Estuarine Species: A Methods Handbook.
Schmitt, P., Rosa, R. D., Duperthuy, M., de Lorgeril, J., Bachère, E., & Destoumieux-Garzón, D. (2012). The Antimicrobial Defense of the Pacific Oyster, Crassostrea gigas. How Diversity may Compensate for Scarcity in the Regulation of Resident/Pathogenic Microflora. Frontiers in Microbiology, 3. doi:10.3389/fmicb.2012.00160
Sokal R. & Rohlf J. (2012). Biometry: the principles and practice of statistics in biological research, Fourth edition. WH Freeman and Company. San Francisco.
Soletchnik, P., Ropert, M., Mazurié, J., Gildas Fleury, P., & Le Coz, F. (2007). Relationships between oyster mortality patterns and environmental data from monitoring databases along the coasts of France. Aquaculture, 271(1-4), 384–400. doi:10.1016/j.aquaculture.2007.02.049
Tedengren, M., & Kautsky, N. (1986). Comparative study of the physiology and its probable effect on size in Blue Mussels (Mytilus Edulis L.) from the North Sea and the Northern Baltic Proper. Ophelia, 25. https://doi.org/10.1080/00785326.1986.10429746
Treviño, L., Lodeiros, C., Vélez-Falcones, J., Chávez-Alcivar, C., Isea-León, F., Bermúdez-Medranda, A. E., Vélez-Chica, J. C., Cruz-Quintana, Y., Leal, D., Santana-Piñeros, A. M., & Rodríguez-Pesantes, D. (2020). Suspended culture evaluation of Pacific oyster Crassostrea gigas in a tropical estuary. Aquaculture Research, Aquaculture Research. 00:1–10. https://doi.org/10.1111/are.14556
Troost, K. (2010). Causes and effects of a highly successful marine invasion: Case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. Journal of Sea Research, 64(3), 145–165. https://doi.org/https://doi.org/10.1016/j.seares.2010.02.004
Wang, L., Song, X., & Song, L. (2018). The oyster immunity. Developmental & Comparative Immunology, 80, 99–118. doi:10.1016/j.dci.2017.05.025
Wang, Y., Hu, M., Shin, P. K. S. & Cheung, S. G. (2011) Immune responses to combined effect of hypoxia and high temperature in the green-lipped mussel Perna viridis. Marine Pollution Bulletin 63(5):201–8. https://doi.org/10.1016/j.marpolbul.2011.05.035.
Wang, W., Li, M., Wang, L., Chen, H., Liu, Z., Jia, Z., Qiu, L., & Song, L. (2017). The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas. Developmental & Comparative Immunology, 67, 221–228. https://doi.org/https://doi.org/10.1016/j.dci.2016.09.017
Wu, F., Falfushynska, H., Dellwig, O., Piontkivska, H., & Sokolova, I. M. (2020). Interactive effects of salinity variation and exposure to ZnO nanoparticles on the innate immune system of a sentinel marine bivalve, Mytilus edulis. Science of The Total Environment, 712, 136473. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.136473
Zapata-Vívenes, E., Rojas de Astudillo, L., Sánchez, G., & Barreto, M. (2012). Metales pesados y biomarcadores relacionados en Perna viridis (Bivalvia: Mytilidae) recolectado en las costas del estado Sucre, Venezuela. Ciencias Marinas, 38, 517–528. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-38802012000400004&nrm=iso
Zhang, Z., Li, X., Vandepeer, M., & Zhao, W. (2006). Effects of water temperature and air exposure on the lysosomal membrane stability of hemocytes in pacific oysters, Crassostrea gigas (Thunberg). Aquaculture, 256(1), 502–509. https://doi.org/https://doi.org/10.1016/j.aquaculture.2006.02.003

Published

2021-09-01

How to Cite

Loján Avellán, M. C., Zapata Vívenes, E., Lodeiros Seijo, C., & Treviño, L. M. (2021). Cellular and immunological biomarkers in Pacific oyster Crassostrea gigas (Thunberg, 1793) reared in a tropical estuary during rainy season. La Técnica. Revista De Las Agrociencias. ISSN 2477-8982, 52–68. https://doi.org/10.33936/la_tecnica.v0i0.3065

Issue

Section

Acuicultura y Pesca