Protein evaluation of amaranth (Amaranthus dubius) flour on the growth of shrimp Penaeus vannamei postlarvae

Authors

  • Luisa Ana Zambrano Mendoza Carrera de Medicina Veterinaria. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López -Calceta, Ecuador http://orcid.org/0000-0003-3498-9219
  • Adriana Lilibeth Párraga Vergara Carrera de Agroindustria. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López - Calceta, Ecuador https://orcid.org/0000-0003-1093-9014
  • Vicky Yuliana Parrales Mendoza Carrera de Agroindustria. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta, Ecuador https://orcid.org/0000-0001-7835-5803
  • Fátima Graciela Arteaga Chávez Carrera de Medicina Veterinaria. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta, Ecuador http://orcid.org/0000-0001-9122-1471
  • Francisco Manuel Demera Lucas Carrera de Agroindustria. Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López, Calceta, Ecuador http://orcid.org/0000-0002-3446-7771
  • Carlos Julio Tubay Bermudez Instituto Politécnico de Leiria, Leiria, Portugal. http://orcid.org/0000-0003-4129-5493

DOI:

https://doi.org/10.33936/la_tecnica.v0i25.3165

Keywords:

Amaranth, growth, shrimp, vegetable protein.

Abstract

Was evaluated the nutritional quality of amaranth flour (Amarantus dubius) (AF) as an alternative source of fishmeal protein (FP) in diets for low salinity shrimp Penaeus vannamei. for which a feeding test was performed for 28 days to examine the effects of partial substitution of 15, 20, 25 and 30% HP by HA. A completely random design (CRD) was applied with four diets and four replicas of each. Physicochemical characterization was performed (protein, ash, acidity, fiber, and moisture) microbiological (Salmonella spp.), in accordance with INEN 1767. The experimental unit was composed of 320 shrimps (0.03 g by weight c/u) in the postlarva stage (PL22) distributed in 16 fish tanks, suitable for an aeration system (dissolved oxygen 7.0 ±0.01 mg·L-1 and constant temperature (25±0.00 °C), controlling salinity (4.09±0.01 UPS) and pH (8.05±0.06). For larval development, growth performance parameters were determined: survival (S), specific growth rate (TCE), feed conversion factor (FCA), feed efficiency (EA) and protein efficiency rate (TEP). For the physicochemical characterization of the feed, a significant statistical difference (p<0.05) was determined between the diets, with AH15 being the most suitable. In the evaluation of growth performance, there was no statistical difference (p>0.05) between diets, therefore, the incorporation of formulations with fishmeal does not influence the growth factors of shrimp in the postlarvae stage, being advisable to replace up to 30% of animal protein with vegetable protein.

 

 

Downloads

Download data is not yet available.

References

Abdalla, M. M. F., Abd El-Wahab, M. M. H., Abdel-Lattif, H. Akiyama, D. M., Dominy, W. G. and Lawrence, A. L. Penaeid Shrimp Nutrition. In: Marine Shrimp Culture. pp. 535-568. Elsevier. https://doi.org/10.1016/b978-0-444-88606-4.50031-x

Bae, J., Hamidoghli, A., Djaballah, M. S., Maamri, S., Hamdi, A., Souffi, I., ... Bai, S. C. (2020). Effects of three different dietary plant protein sources as fishmeal replacers in juvenile whiteleg shrimp, Lito Penaeus Vannamei. Fisheries and Aquatic Sciences, 23(1). https://doi.org/10.1186/s41240-020-0148-x

Bermudes-Lizárraga, F. J., Nieves-Soto, M., Medina-Jasso, A., Román-Reyes, J. C., Flores-Campaña, L. M., Ortega-Salas, A. A. and Piña-Valdez, P. (2017). La salinidad y la temperatura son las variables más influyentes en el metabolismo, desarrollo y crecimiento de larvas. 52. https://doi.org/10.4067/S0718-19572017000300016

Caimi, C., Renna, M., Lussiana, C., Bonaldo, A., Gariglio, M., Meneguz, M., ... Gasco, L. (2020). First insights on Black Soldier Fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture, 515, 734539. https://doi.org/10.1016/j.aquaculture.2019.734539

Chen, K., Li, E., Xu, C., Wang, X., Lin, H., Qin, J. G. and Chen, L. (2015). Evaluation of different lipid sources in diet of pacific white shrimp Lito Penaeus vannamei at low salinity. Aquaculture Reports, 2, 163-168. https://doi.org/10.1016/j.aqrep.2015.10.003

FAO. (1989). Nutrición y alimentación de peces y camarones cultivados manual de capacacitación. http://www.fao.org/3/ab492s/AB492S00.htm#TOC

FAO. (1991). El estado mundial de la agricultura y la alimentación, 1991.

FAO. (2018). The State of World Fisheries and Aquaculture 2020. Fisheries and Aquaculture Department website: http://www.fao.org/state-of-fisheries-aquaculture/en/

Fawole, F. J., Adeoye, A. A., Tiamiyu, L. O., Ajala, K. I., Obadara, S. O., and Ganiyu, I. O. (2020). Substituting fishmeal with Hermetia illucens in the diets of African catfish (Clarias gariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture, 518, 734-849. https://doi.org/10.1016/j.aquaculture.2019.734849

Francis, G., Makkar, H. P. S. and Becker, K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture, 199. pp. 197-227. Elsevier. https://doi.org/10.1016/S0044-8486(01)00526-9

Fuertes, J. B., Celada, J. D., Carral, J. M., Sáez-Royuela, M. and González-Rodríguez, Á. (2012). Effects of dietary protein and different levels of replacement of fish meal by soybean meal in practical diets for juvenile crayfish (Pacifastacus leniusculus, Astacidae) from the onset of exogenous feeding. Aquaculture, 364-365, 338-344. https://doi.org/10.1016/j.aquaculture.2012.08.050

Grundy, M. M. L., Momanyi, D. K., Holland, C., Kawaka, F., Tan, S., Salim, M., ... Owino, W. O. (2020). Effects of grain source and processing methods on the nutritional profile and digestibility of grain amaranth. Journal of Functional Foods,72. https://doi.org/10.1016/j.jff.2020.104065

INEN. (1990). NTE INEN 1767: Alimentos zootécnicos compuestos para camarones. Requisitos: Instituto Ecuatoriano de Normalización (INEN) : Free Download, Borrow, and Streaming: Internet Archive. Retrieved October 23, 2020, from NTE INEN 1767: Alimentos zootécnicos compuestos para camarones. Requisitos website: https://archive.org/details/ec.nte.1767.1990

Jackson, A. J., Capper, B. S. and Matty, A. J. (1982). Evaluation of some plant proteins in complete diets for the tilapia Sarotherodon mossambicus. Aquaculture, 27(2), 97-109. https://doi.org/10.1016/0044-8486(82)90129-6

Jannathulla, R., Dayal, J. S., Vasanthakumar, D., Ambasankar, K. and Muralidhar, M. (2018). Effect of fungal fermentation on apparent digestibility coefficient for dry matter, crude protein and amino acids of various plant protein sources in Penaeus vannamei. Aquaculture Nutrition, 24(4), 1318-1329. https://doi.org/10.1111/anu.12669

Karama ́ckarama ́c, M., Gai, F., Longato, E., Meineri, G., Janiak, M. A., Amarowicz, R. and Peiretti, P. G. (2019). Antioxidant activity and phenolic composition of Amaranth (Amaranthus caudatus) during plant growth. Antioxidants, 8(6), 173. https://doi.org/10.3390/antiox8060173

Li, E., Wang, X., Chen, K., Xu, C., Qin, J. G. and Chen, L. (2017). Physiological change and nutritional requirement of Pacific white shrimp Litopenaeus vannamei at low salinity. Reviews inAquaculture, 9. pp. 57-75. Wiley-Blackwell. https://doi.org/10.1111/raq.12104

Liang, M., Wang, S., Wang, J., Chang, Q. and Mai, K. (2008). Comparison of flavor components in shrimp Litopenaeus vannamei cultured in sea water and low salinity water. Fisheries Science, 74(5), 1173-1179. https://doi.org/10.1111/j.1444-2906.2008.01637.x

Malcorps, W., Kok, B., Van’t Land, M., Fritz, M., Van Doren, D., Servin, K., ... Davies, S. J. (2019). The Sustainability Conundrum of fishmeal substitution by plant ingredients in shrimp feeds. 11. https://doi.org/10.3390/su11041212

Molina-Poveda, C., Lucas, M. and Jover, M. (2013). Evaluation of the potential of Andean lupin meal (Lupinus mutabilisSweet) as an alternative to fish meal in juvenile Litopenaeus vannamei diets. https://doi.org/10.1016/j.aquaculture.2013.06.007

Moniruzzaman, M., Bae, J. H., Won, S. H., Cho, S. J., Chang, K. H. and Bai, S. C. (2018). Evaluation of solid-state fermented protein concentrates as a fish meal replacer in the diets of juvenile rainbow trout, Oncorhynchusmykiss. Aquaculture Nutrition, 24(4), 1198-1212. https://doi.org/10.1111/anu.12658

Ngugi, C. C., Oyoo-Okoth, E., Manyala, J. O., Fitzsimmons, K. and Kimotho, A. (2017). Characterization of the nutritional quality of amaranth leaf protein concentrates and suitability of fish meal replacement in Nile tilapia feeds. Aquaculture Reports, 5, 62-69. https://doi.org/10.1016/j.aqrep.2017.01.003

Saoud, I. P., Davis, D. A. and Rouse, D. B. (2003). Suitability studies of inland well waters for Litopenaeus vannameiculture. Aquaculture, 217(1-4), 373-383. https://doi.org/10.1016/S0044-8486(02)00418-0

Shukla, S. and Singh, S. P. (2003). Correlation and path analysis in grain amaranth (Amaranthus spp.). J. Genet, 63. Retrieved from www.IndianJournals.com

Soliman, N. F., Yacout, D. M. M. and Hassaan, M. A. (2017). Responsible fishmeal consumption and alternatives in the face of climate changes. International Journal of Marine Science. https://doi.org/10.5376/ijms.2017.07.0015

Venero, J. A. (2006). Optimization of dietary nutrient inputs for Pacific White Shrimp Litopenaeus vannamei. Retrieved from https://etd.auburn.edu//handle/10415/407

Venskutonis, P. R., and Kraujalis, P. (2013). Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Comprehensive Reviews in Food Science Anda Food Safety, 381-412. https://doi.org/10.1111/1541-4337.12021

Published

2021-01-08

How to Cite

Zambrano Mendoza, L. A., Párraga Vergara, A. L., Parrales Mendoza, V. Y., Arteaga Chávez, F. G., Demera Lucas, F. M., & Tubay Bermudez, C. J. (2021). Protein evaluation of amaranth (Amaranthus dubius) flour on the growth of shrimp Penaeus vannamei postlarvae. La Técnica. Revista De Las Agrociencias. ISSN 2477-8982, 11(1), 1–7. https://doi.org/10.33936/la_tecnica.v0i25.3165

Issue

Section

Agricultura y Silvicultura