Pregnancy loss in the female bovine and strategies to improve efficiency in assisted reproductive programs

Animal Health and Production

Authors

DOI:

https://doi.org/10.33936/latecnica.v14i1.5472

Keywords:

repeat service; pregnancy losses; embryonic mortality.

Abstract

In artificial insemination (AI) programs, repeated estrus and embryonic (EM) and fetal losses are important causes of low reproductive efficiency in hot climates. This literature review aims to show the causes and strategies to decrease pregnancy losses in cows. In cattle, the fertilization rate is high and occurs in approximately 75 to 90% of the inseminated females. Embryonic losses occur in more than 25% of the services and the highest proportion of them occurs between 15 to 17 days after service and six weeks after the beginning of pregnancy. Biotechnical procedures used to prevent repeat estrus and embryonic and fetal mortality include the use of exogenous hormones including progesterone, estrogens, growth hormone, human
chorionic gonadotropin, hormone releasing factors and recombinant alpha interferon to enhance corpus luteum functions and inhibit the mechanism of luteolysis. Other procedures include the application of various biotechnical estrus synchronization and resynchronization procedures to improve the efficiency of AI services and correct low estrus detection efficiency. Feeding supplementation with unsaturated fat and antioxidants and management measures to reduce the impact of heat stress. These procedures can contribute to improve fertility of cattle in hot climates.

Downloads

Download data is not yet available.

References

Ali, S. (2021). Fertilization failure and early embryonic mortality as a major cause of reproductive failure in cattle: A review. World Scientific News, 158, 59-71.

Besbaci, M., Abdelli, A., Minviel, J. J., Belabdi, I., Kaidi, R. and Raboisson, D. (2020). Association of pregnancy per artificial insemination with gonadotropin-releasing hormone and human chorionic gonadotropin administered during the luteal phase after artificial insemination in dairy cows: A meta-analysis. Journal of Dairy Science, 103(2), 2006-2018. https://doi.org/10.3168/jds.2019-16439

Bradford, B. J., Yuan, K., Farney, J. K., Mamedova, L. K. and Carpenter, A. J. (2015). Invited review: Inflammation during the transition to lactation: New adventures with an old flame. Journal of Dairy Science, 98(10), 6631-6650. https://doi.org/10.3168/jds.2015-9683

Caton, J., Crouse, M., McLean, K., Dahlen, C., Ward, A., Cushman, R., Grazul-Bilska, A., Neville, B., Borowicz, P. and Reynolds, L. (2020). Maternal periconceptual nutrition, early pregnancy, and developmental outcomes in beef cattle, Journal of Animal Science, 98(12), skaa358, https://doi.org/10.1093/jas/skaa358

Dahl, M. O., Maunsell, F. P., De Vries, A., Galvao, K. N., Risco, C. A. and Hernández, J. A. (2017). Evidence that mastitis can cause pregnancy loss in dairy cows: A systematic review of observational studies. Journal of Dairy Science, 100(10), 8322-8329. https://doi.org/10.3168/jds.2017-12711

De Bie, J. (2017). The follicular micro-enviroment of the oocyte in metabolically compromised dairy cows: impact assessment as a basic fro oocyte recue. Thesis, PhD. Universiteit. Antwerpen. Antwerp.

Diskin, M. G., Waters, S. M., Parr, M. H. and Kenny, D. A. (2016). Pregnancy losses in cattle: potential for improvement. Reproduction, Fertility, and Development, 28(1-2), 83-93. https://doi.org/10.1071/RD15366

Duica, A., Tovío, N. and Grajales, H. (2007). Factors that affect the reproductive efficiency of the recipient within a bovine embryo transfer program. Revista de Medicina Veterinaria. 14, 107-124.

Ealy, A. D. and Seekford, Z. K. (2019). Symposium review: Predicting pregnancy loss in dairy cattle. Journal of Dairy Science, 102(12), 11798-11804. https://doi.org/10.3168/jds.2019-17176

Fabian, D., Bystriansky, J., Cikoš, S., Bukovská, A., Burkuš, J. and Koppel, J. (2010). The effect on preimplantation embryo development of non-specific inflammation localized outside the reproductive tract. Theriogenology, 74(9), 1652-1660. https://doi.org/10.1016/j.theriogeno logy.2010.06.038

Fair, T. (2016). Embryo maternal immune interactions in cattle. Animal Reproduction, 13(3), 346-354. https://doi.org/10.21451/1984-3143-ar877

Figueredo Rodríguez, Y., Gonzáles Cabrera, N., Martínez Lemane, J., Mollineda Pérez, Á., García Gómez, I., García, J. R., Roller Gutiérrez, F. y Pedroso Sosa, R. (2017). Nivel de inmunoglobulinas, incidencia de mastitis y fertilidad de vacas lecheras hipocuprémicas suplementadas con cobre. La técnica, 18, 43-48. https://doi.org/10.33936/la_tecnica. v0i18.808

Greco, L. F., Neves Neto, J. T., Pedrico, A., Ferrazza, R. A., Lima, F. S., Bisinotto, R. S., Martinez, N., Garcia, M., Ribeiro, E. S., Gomes, G. C., Shin, J. H., Ballou, M. A., Thatcher, W. W., Staples, C. R. and Santos, J. E. (2015). Effects of altering the ratio of dietary n-6 to n-3 fatty acids on performance and inflammatory responses to a lipopolysaccharide challenge in lactating Holstein cows. Journal of Dairy Science, 98(1), 602-617. https://doi.org/10.3168/jds.2014-8805

Hansen, P. J. and Barron, D. H. (2011). Challenges to fertility in dairy cattle: from ovulation to the fetal stage of pregnancy desafios na fertilidade de gado leiteiro: da ovulação ao estágio fetal da gestação. Rev. Bras. Reprod. Anim., 35, 229-238.

Hernández-Cerón, J. y Gutiérrez-Aguilar, C. G. (2013). La somatotropina bovina recombinante y la reproducción en bovinos, ovinos y caprinos. Agrociencia, 47(1), 35-45. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952013000100004 &lng=es&tlng=es.

Herzog, K., Brockhan-Ludemann, M., Kaske, N., Beindorff, V., Niemann, P. H. and Bollwein, (2010). Luteal blood flow is a more appropriate indicator for luteal function during the bovine estrous cycle than luteal size. Theriogenology, 73, 691-697. http://dx.doi.org/ 10.1016/j.theriogenology.2016.04.037. PMid:27238438

Khatib, H., Monson, R. L., Huang, W., Khatib, R., Schutzkus, V., Khateeb, H. and Parrish, J. J. (2010). Short communication: Validation of in vitro fertility genes in a Holstein bull population. J. Dairy Sci. 93, 2244-2249.

Lamb, G. C., Dahlen, C. R., Larson, J. E., Marquezini, G. and Stevenson, J. S. (2010). Control of the estrous cycle to improve fertility for fixed-time artificial insemination in beef cattle: a review. Journal of Animal Science, 88(Suppl 13), E181-E192. https://doi.org/10.2527/jas. 2009-2349

Lenis, Y., Ramón, N., Restrepo, J., Olivera, M. y Tarazona, A. (2010). Interferón tau en la ventana de reconocimiento materno embrionario bovino. Revista U.D.C.A Actualidad & Divulgación Científica, 13(1), 17-28. https://doi.org/10.31910/rudca.v13.n1.2010.705

Leroy, J. L., Valckx, S. D., Jordaens, L., De Bie, J., Desmet, K. L., Van Hoeck, V., Britt, J. H., Marei, W. F. and Bols, P. E. (2015). Nutrition and maternal metabolic health in relation to oocyte and embryo quality: critical views on what we learned from the dairy cow model. Reproduction, Fertility, and Development, 27(4), 693-703. https://doi.org/10.1071/ RD14363

Mann, G. E. (2008). Meta-analysis of progesterone supplementation during early pregnancy in cattle. J. Anim. Sci. 86, 387-390.

Melo, G. D., Pinto, L. M. F., Rocha, C. C., Motta, I. G., Silva, L. A., da Silveira, J. C., Gonella-Diaza, A. M., Binelli, M. and Pugliesi, G. (2020). Type I interferon receptors and interferon-τ-stimulated genes in peripheral blood mononuclear cells and polymorphonuclear leucocytes during early pregnancy in beef heifers. Reproduction, Fertility, and Development, 32(11), 953-966. https://doi.org/10.1071/RD19430

Middleton, E. L. and Pursley, J. R. (2019). Short communication: Blood samples before and after embryonic attachment accurately determine non-pregnant lactating dairy cows at 24 d post-artificial insemination using a commercially available assay for pregnancy-specific protein B. Journal of Dairy Science, 102(8), 7570-7575. https://doi.org/10.3168/jds.2018-15961

Molina-Coto, R. (2017). El estrés calórico afecta el comportamiento reproductivo y el desarrollo embrionario temprano en bovinos. Nutrición Animal Tropical, 11(1), 1-15. https://doi.org/10.15517/nat.v11i1.28280Morales, C. J. L., Pedroso, S. R., Leyva, O. C., Denis, G. R., Guerrero, G. H. Z., Pineda, M. R., Guerrero, M. C. y Veliz, D. F. G. (2016). Efecto de la mastitis sobre el comportamiento reproductivo de vacas Holstein Friesian en la Comarca Lagunera en México. Memorias del 5to Congreso Internacional sobre Mejoramiento Animal. 9(2 y 3). La habana Cuba.

Moriel, P., Vedovatto, M., Palmer, E. A., Oliveira, R. A., Silva, H. M., Ranches, J. and Vendramini, J. M. (2020). Maternal supplementation of energy and protein, but not methionine hydroxy analog, enhanced postnatal growth and response to vaccination in Bos indicus-influenced beef offspring. Journal of Animal Science, 98(5), skaa123.

Ninabanda, J. J. (2018). Impacto del balance energético negativo en vacas lecheras tratadas con somatotropina recombinante bovina. Rev. Vet. 29, 1, 68-72.

Oliveira, R. Fo, Franco, G, Reese, S, Dantas. F, Fontes, P, Cooke, R, Rhinehart, J, Thompson, K, Pohler, K. (2019). Using pregnancy associated glycoproteins (PAG) for pregnancy detection at day 24 of gestation in beef cattle. Theriogenology, 141, 128-33. http://dx.doi.org/10.1016/j.theriogenology. 09.014. PMid:31539641.

Olivera, M. (2010). Señales moleculares que afectan la síntesis de prostaglandina F-2 Alfa y Prostaglandina E-2 en el endometrio. Revista Colombiana de Ciencia Pecuarias, 23, 377-389.

Osorio, J. y Pedroso, R. (2021) Factores que influencian la tasa de preñez de hembras bovinas receptoras de embriones in vitro en una región tropical baja del Ecuador. Ciencia y Tecnología Ganadera, 15(1), 29-40.

Pankratova, A. V., Aminova, A. L., Kozyrev, S. G., Al-Azawi Nagham, M. H. (2019). Role of reproductive hormones in ovarian pathology in cows. Plant Archives. 19(Suppl. 1), 24-33.

Pedroso, R. y Roller, F. (2021). Métodos biotécnicos y manejo reproductivo para mejorar la fertilidad y eficacia de las técnicas de reproducción asistida del ganado bovino en clima tropical. Primera Edición CIMAGT. ISBN.976-959-7198-22-2.

Pedroso, R. (2011) Interacción nutrición reproducción del ganado bovino en pastoreo. Mesa redonda. Congreso Internacional de Medicina Veterinaria. Palacio de las Convenciones, La Habana.

Pedroso, R., Roller, F., Solano, R., González, N., Ruiz, T., Fajardo, H. y Viamonte, M. (2011). Alteraciones metabólicas y carenciales que afectan la aplicación de las biotecnologías de la reproducción en la hembra bovina en clima tropical. Reseña. Ciencia y Tecnología Ganadera, 5, 67-86.

Pohler, K. G., Pereira, M. H. C., Lopes, F. R., Lawrence, J. C., Keisler, D. H., Smith, M. F., Vasconcelos, J. L. M. and Green, J. A. (2016). Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. J Dairy Sci., 99(2), 1584-94. http://dx.doi.org/10.3168/jds.2015-10192. PMid:26709163.

Pohler, K. G., Green, J. A., Moley, L. A., Gunewardena, S., Hung, W.-T., Payton, R. R., Hong, X., Christenson, L. K., Geary, T. W. and Smith, M. F. (2017). Circulating microRNA as candidates. Mol. Reprod. Dev., 84(8), 731-743. http://dx.doi.org/10.1002/mrd.22856.

Reese, S. T., Franco, G. A., Poole, R. K., Hood, R., Fernández Montero, L., Oliveira, R. V., Fo, Cooke, R. F. and Pohler, K. G. (2020). Pregnancy loss in beef cattle: a meta-analysis. Anim. Reprod. Sci., 212, 106251. http://dx.doi.org/10.1016/j.anireprosci.2019.106251.

Rizos, D., Carter, F., Besenfelder, U., Havlicek, V. and Lonergan, P. (2010). Contribution of the female reproductive tract to low fertility in postpartum lactating dairy cows. J. Dairy Sci., 93, 1022-1029.

Salasel, B., Mokhtari, A. and Taktaz, T. (2010). Prevalence, risk factors for and impact of subclinical endometritis in repeat breeder dairy cows. Theriogenology, 74(7), 1271-1278. https://doi.org/10.1016/j.theriogenology.2010.05.033

Santos, J. and Ribeiro, E. (2014). Impact of animal health on reproduction of dairy cows. Anim Reprod., 11(39), 254-269.Sartori, R., Bastos, M. R. and Wiltbank, M. C. (2010). Factors affecting fertilisation and early embryo quality in single- and superovulated dairy cattle. Reproduction, Fertility, and Development, 22(1), 151-158. https://doi.org/10.1071/RD09221

Syid, A. (2021). Fertilization failure and early embryonic mortality as a major cause of reproductive failure in cattle: A review. World Scientific News, 34, 59-71.

Schütz, K. E., Cox, N. R. and Tucker, C. B. (2014). A field study of the behavioral and physiological effects of varying amounts of shade for lactating cows at pasture. Journal of Dairy Science, 97(6), 3599-3605. https://doi.org/10.3168/jds.2013-7649

Scully, S., Evans, A., Carter, F., Duffy, P., Lonergan, P. and Crowe, M. (2015) Ultrasound monitoring of blood flow and echotexture of the corpus luteum and uterus during early pregnancy of beef heifers. Theriogenology, 83(3), 449-458. http://dx.doi.org/10.1016/j. theriogenology.2014.10.009.

Shaw, A. E., Hughes, J., Gu, Q., Behdenna, A., Singer, J. B., Dennis, T., Orton, R. J., Varela, M., Gifford, R. J., Wilson, S. J. and Palmarini, M. (2017). Fundamental properties of the mammalian innate immune system revealed by multispecies comparison of type I interferon responses. PLoS Biology, 15(12), e2004086. https://doi.org/10.1371/journal.pbio.2004086

Stranden, I., Kantanen, J., Russo, I. R. M., Orozco-terWengel, P., Bruford, M. W. and the Climgen Consortium. (2019). Genomic selection strategies for breeding adaptation and production in dairy cattle under climate change. Heredity, 123, 307-317 https://doi.org/ 10.1038/s41437-019-0207-1

Warnick, A. C. and Hansen, P. J. (2010). Comparison of ovulation, fertilization and embryonic survival in low-fertility beef cows compared to fertile females. Theriogenology, 73, 1306-1310.

Wathes, D. C. and Lamming, G. E. (1995). The oxitocin luteolysis and maintanaC pregnancy . J. Reprod Fertil, 49, 53-67.Wiltbank, M. C., Báez, G. M., García-Guerra, A., Toledo, M. Z., Monteiro, P. L., Melo, L. F., Ochoa, J. C., Santos, J. E. and Sartori, R. (2016). Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows. Theriogenology, 86(1), 239-253.

Wiltbank, M. C., Mezera, M. A., Toledo, M. Z., Drum, J. N., Baez, G. M., García-Guerra, A. and Sartori, R. (2018). Physiological mechanisms involved in maintaining the corpus luteum during the first two months of pregnancy. Animal Reproduction, 15(Suppl 1), 805-821. https://doi.org/10.21451/1984-3143-AR2018-0045

Yusuf, M., Nakao, T., Ranasinghe, R. B., Gautam, G., Long, S. T., Yoshida, C., Koike, K. and Hayashi, A. (2010). Reproductive performance of repeat breeders in dairy herds. Theriogenology, 73(9), 1220-1229. https://doi.org/10.1016/j.theriogenology.2010.01

Zhang, K. and Smith, G. W. (2015). Maternal control of early embryogenesis in mammals. Reproduction, Fertility, and Development, 27(6), 880-896. https://doi.org/ 10.1071/RD14441

Published

2024-01-01

How to Cite

Toala Soledispa, R. A., Pedroso Sosa, R. ., Burgos Macías, D. I. ., & Roller Gutierrez, F. (2024). Pregnancy loss in the female bovine and strategies to improve efficiency in assisted reproductive programs: Animal Health and Production. La Técnica. Revista De Las Agrociencias. ISSN 2477-8982, 14(1), 1–11. https://doi.org/10.33936/latecnica.v14i1.5472

Issue

Section

Artículos