Effect of calcium and organic matter as an alternative for reducing cadmium toxicity in maize
Protección del Ambiente
DOI:
https://doi.org/10.33936/latecnica.v15i1.7027Keywords:
heavy metal, cadmium uptake, dry biomass.Abstract
Cadmium (Cd) contamination in maize is crucial for ensuring food security,
as this heavy metal can accumulate in the grains and pose a significant risk to
human health. The objective of this research was to evaluate calcium (Ca) sources and organic matter (OM) as alternatives to reduce cadmium uptake in maize. A completely randomized design with a 2 x 4 factorial arrangement was used, where
different treatments combining OM application and Ca sources were evaluated. Soil preparation included the addition of compost in the OM treatments. Cd contamination was induced by adding cadmium chloride (CdCl₂), followed by the application of Ca sources through irrigation. Maize seeds were planted in pots with consistent irrigation to maintain adequate moisture. Over a period of
60 days, various variables were monitored and recorded, including dry weight and Cd concentration in roots and stems. The results showed highly significant differences in the dry biomass of maize leaves and roots exposed to cadmium contamination, both in simple effects and in the interaction between OM and Ca
sources. It was observed that the incorporation of 2% OM and calcium nitrate Ca(NO₃)₂ had a significant impact on biomass production and Cd concentration in maize plants exposed to the contaminant, both independently and in combination.
Downloads
References
Alloway, B. J. (Ed.). (2012). Heavy metals in soils: trace metals and metalloids in soils and theirbioavailability (Vol. 22). Springer Science& Business Media.
Andrade, K., Rivera-Fernández, R. D., y Cuenca, E. C. (2023). Efecto de distintos niveles de fertilización en el comportamiento agronómico del frejol caupí INIAP-463.
Angon, P. B., Islam, M. S., Kc, S., Das, A., Anjum, N., Poudel, A., and Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants
and human food chain. Heliyon, 10(7), e28357. https://doi.org/10.1016/j.heliyon.2024.e28357
Anwar, T., Qureshi, H., Jabeen, M., Zaman, W., and Ali, H. M. (2024). Mitigation of cadmium-induced stress in maize via synergistic application of biochar and gibberellic acid
to enhance morpho-physiological and biochemical traits. BMC Plant Biology, 24(1), 192. https://doi.org/10.1186/s12870-024-04805-2
Arispe, J. L., Sánchez, A., y Galindo, M. E. (2019). Presencia de Diatraea saccharalis (Fabricius) (Lepidoptera:Crambidae) en Tepalcingo, Morelos, México, con evaluación del daño causado en el cultivo de maíz (Zea mays L.). Revista Chilena de Entomología,
(4). https://www.biotaxa.org/rce/article/view/57568
Aslam, M. M., Okal, E. J., and Waseem, M. (2023). Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regulation, 99(3), 397-412.
https://doi.org/10.1007/s10725-022-00917-7
Bektas, H., Hohn, C. E., Lukaszewski, A. J., and Waines, J. G. (2023). On the possible trade-off between shoot and root biomass in wheat. Plants, 12(13), 2513. https://doi.
org/10.3390/plants12132513
Cai, Y., Wang, X., Beesley, L., Zhang, Z., Zhi, S., and Ding, Y. (2021). Cadmium uptake reduction in paddy rice with a combination of water management, soil application of
calcium magnesium phosphate and foliar spraying of Si/Se. Environmental Science and Pollution Research, 28(36), 50378-50387. https://doi.org/10.1007/s11356-021-13512-6
Chen, Q., Wang, L., Li, B., He, S., Li, Y., He, Y., Liang, X., and Zhan, F. (2024). Remediation of cadmium and lead in mine soilby ameliorants and its impacton maize (Zea
mays L.) cultivation. Agronomy, 14(2), 372. https://doi.org/10.3390/agronomy14020372
Choong, G., Liu, Y., and Templeton, D. M. (2014). Interplay of calcium and cadmium in mediating cadmium toxicity. Chemico-Biological Interactions, 211, 54-65.
https://doi.org/ 10.1016/j.cbi.2014.01.007
Choudhary, S. P., Bhardwaj, R., Gupta, B. D., Dutt, P., Gupta, R. K., Biondi, S., and Kanwar, M. (2010). Epibrassinolide induces changes in indole‐3‐acetic acid, abscisic acid and polyamine concentrations and enhances antioxidant potential of radish seedlings under copper stress. Physiologia Plantarum, 140(3), 280-296. https://doi.org/10.1111/j.1399-3054.2010.01403.x
Daripa, A., Malav, L. C., Yadav, D. K., and Chattaraj, S. (2023). Metal contamination in water resources due to various anthropogenic activities. (pp. 111-127). In: Metals in water. Elsevier. https://doi.org/10.1016/j.ecoenv.2024.116189
Fang, X., Lee, X., Twagirayezu, G., Cheng, H., Lu, H., Huang, S., Deng, L., Ji, B. (2024). A critical review of the effectiveness of biochar coupled with arbuscular mycorrhizal fungi in soil cadmium immobilization. Journal of Fungi, 10(3), 182. https://doi.org/10.3390/jof10030182
Genchi, G., Sinicropi, M. S., Lauria, G., Carocci, A., and Catalano, A. (2020). The effects of cadmium toxicity. International Journal of Environmental Research and Public Health, 17(11), 3782. https://doi.org/10.3390/ijerph17113782
Hayat, M. T., Nauman, M., Nazir, N., Ali, S., and Bangash, N. (2019). Environmental hazard sof cadmium: past, present, and future. (pp. 163-183). In: Cadmium toxicity
and tolerance in plants. Academic Press. https://doi.org/10.1016/B978-0-12-814864-8.00007-3
Hembrom, S., Singh, B., Gupta, S. K., and Nema, A. K. (2020). A comprehensive evaluation of heavy metal contamination in foodstuff and associated human health risk: a global perspective. Contemporary environmental issues and challenges in era of climate change, 33-63. https://doi.org/10.1007/978-981-32-9595-7_2
Kaleem, M., Shabir, F., Hussain, I., Hameed, M., Ahmad, M. S. A., Mehmood, A., Ashfaq, W., Riaz, S., Afzaal, Z., Faisal Maqsood, M., Iqbal, U., Shah, S., and Irshad, M. (2022).
Alleviation of cadmium toxicity in Zea mays L. through up-regulation of growth, antioxidant defense system and organic osmolytes under calcium supplementation. Plos
One, 17(6), e0269162. https://doi.org/10.1371/journal.pone.0269162
Kumar, R., Kumar, V., Tandon, V., Kumar, S., and Roohi, T. (2024). Effect and responses of cadmium in plants. (pp. 327-347). In: Cadmium Toxicity in Water: Challenges and Solutions. Cham: Springer NatureSwitzerland. https://doi.org/10.1007/978-3-031-54005-9_13
Li, C., Zhou, K., Qin, W., Tian, C., Qi, M., Yan, X., and Han, W. (2019). A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil and Sediment Contamination: An International Journal, 28(4), 380-394. https://doi.org/10.1080/15320383.2019.1592108
Luo, M., Cao, H. M., Fan, Y. Y., Zhou, X. C., Chen, J. X., Chung, H., and Wei, H. Y. (2019). Bioaccumulation of cadmium affects development, mating behavior, and fecundity in the Asian Corn Borer, Ostrinia furnacalis. Insects, 11(1), 7. https://doi.org/10.3390/insects11010007
Mazhar, M. W., Ishtiaq, M., Maqbool, M., Ajaib, M., Hussain, I., Hussain, T., Parveen, A., Thind, S., Sardar, T., Akram, R., Azeem, M., and Gul, A. (2023). Synergistic application of calcium oxide nanoparticles and farmyard manure induces cadmium tolerance in mungbean (Vigna radiata L.) by influencing physiological and biochemical parameters. PLoSOne, 18(3), e0282531. https://doi.org/10.1371/journal.pone. 0282531
Mongkhonsin, B., Nakbanpote, W., Meesungnoen, O., and Prasad, M. N. V. (2018). Adaptive and tolerance mechanisms in herbaceous plants exposed to cadmium. In: Cadmium toxicity and tolerance in plants: From physiology tore
mediation. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814864-8.00004-8
Pedraza, E. T., y Rojas, M. Á. H. (2017). Distribución del contenido de cadmio en los diferentes órganos del cacao CCN-51 en suelo aluvial y residual en las localidades de
Jacintillo y Ramal de Aspuzana. Revista de Investigación de Agroproducción Sustentable, 1(2), 69-78. https://doi.org/10.25127/aps.20172.365
Peña-Becerril, J. C., Monroy-Ata, A., Álvarez-Sánchez, F. J., y Orozco-Almanza, M. S. (2005). Uso del efecto de borde de la vegetación para la restauración ecológica del bosque tropical. Tip Revista Especializada en Ciencias Químico-Biológicas, 8(2), 91-98. https://www.redalyc.org/pdf/432/43220804.pdf
Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A., and Beck, L. (2023). Heavy metal contamination in agriculturalsoil: environmental
pollutant saffecting crop health. Agronomy, 13(6), 1521. https://doi.org/10.3390/agronomy13061521
Rouf Shah, T., Prasad, K., and Kumar, P. (2016). Maize -A potentialsourceof human nutrition and health: A review. Cogent Food & Agriculture, 2(1), 1166995. https://doi.
org/10.1007/ s12571-011-0140-5
Safari Sinegani, M., Manzoor, M., and Mühling, K. H. (2024). Calcium-associated anions play a dual role in modulating cadmium uptake and translocation in wheat. Pollutants,
(3), 340-349. https://doi.org/10.3390/pollutants4030023
Sui, F., Yang, Y., Wu, Y., Yan, J., Fu, H., Li, C., Qin, S., Wang, L., Zhang, W., Gao, W., Liu, H., and Zhao, P. (2024). Cadmium minimization in grainsof maize and wheat grown on smelting-impacted land ameliorated by limestone. Toxics, 12(8), 532. https://doi.org/10.3390/toxics12080532
Varma, A., Prasad, R., and Tuteja, N. (Eds.). (2017). Mycorrhizaeco-physiology, secondary metabolites, nanomaterials. Cham: Springer International Publishing. https://doi.
org/10.1007/978-3-319-57849-1
Zhang, S., Li, Q., Nazir, M. M., Ali, S., Ouyang, Y., Ye, S., and Zeng, F. (2020). Calcium plays a double-edged role in modulating cadmium uptake and translocation in
rice. International Journal of Molecular Sciences, 21(21), 8058. https://doi.org/10.3390/ijms21218058
Zhang, X., Yang, M., Yang, H., Pian, R., Wang, J., and Wu, A. M. (2024). The uptake, transfer, and detoxification of cadmium in plants and its exogenous effects. Cells, 13(11), 907. https://doi.org/10.3390/cells13110907
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ana Karen Cobeña Loor, Jéssica Jessenia Morán Morán

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

