La vinaza como bioherbicida y biofertilizante: una alternativa sostenible para la agricultura ecológica

Agricultura y Silvicultura

Autores

  • Washington Guzmán Paredes Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López – ESPAM MFL https://orcid.org/0009-0000-5314-708X
  • Ever Darío Morales Avendaño Escuela Superior Politécnica Agropecuaria de Manabí Manuel Félix López – ESPAM MFL https://orcid.org/0000-0001-9006-4996

DOI:

https://doi.org/10.33936/latecnica.v15i2.7355

Palavras-chave:

sostenibilidad agroindustrial, control de malezas, manejo de residuos.

Resumo

La vinaza, un subproducto del bioetanol, tiene un gran potencial como biofertilizante y herbicida en la agricultura ecológica. Este estudio evaluó el efecto de vinaza no tratada y pretratada con CO₃Ca, NaHCO₃ y Ca(OH)₂ en parcelas de 1 m², utilizando un diseño completamente al azar con cuatro repeticiones. La vinaza fue pretratada para ajustar su pH y se aplicaron distintas dosis, midiendo variables como la altura de las plantas, número de hojas y quemaduras foliares. Los resultados mostraron que los tratamientos con NaHCO₃ y Ca(OH)₂ redujeron la conductividad eléctrica (CE) en más del 99%, alcanzando valores cercanos a 13,64 µS·cm-1, frente al testigo de 6420 µS·cm-1. La DBO₅ disminuyó a 5.000 mg·L-1, mientras que la DQO aumentó a 155,250 mg·L-1. El tratamiento con CO₃Ca promovió un notable crecimiento vegetal, con una altura promedio de 32,25 ± 1,12 cm a los 23 días, demostrando su efecto como biofertilizante. En el control de malezas, la vinaza no tratada causó hasta un 80% de quemaduras en Microtea debilis y un 100% en Cyanthillium cinereum. Los tratamientos con NaHCO₃ y Ca(OH)₂ mostraron efectos herbicidas de entre un 5% y 60% en 10 especies diferentes. En conclusión, la vinaza tratada con CO₃Ca favorece la biofertilidad, mientras que la vinaza combinada con NaHCO₃ y Ca(OH)₂ es más efectiva como herbicida.

Downloads

Não há dados estatísticos.

Referências

Aditiawati, P., Viridi, S., Palupi, S., Rostiani, R., Samosir, M. D. y Primaresti, P. D. (2021). Mathematical modelling of soybean var. Anjasmoro plant growth. Journal of Physics: Conference Series, 2072(1), 012009. https://doi.org/10.1088/1742-6596/2072/1/012009

Anggraini, D., Idris, M. y Rahmadina, R. (2024). Effectiveness of eco farming as organic fertilizer on vegetative growth Basil (Ocimum basilicum L.). Jurnal Biologi Tropis, 24(1), 774-780. https://doi.org/10.29303/jbt.v24i1.6694

Atero, S., Izquierdo, M. J., García, C., Rodríguez, M., Navarro, I. y Navarro, E. (2024). An evaluation of the effectivity of the green leaves biostimulant on lettuce growth, nutritional quality, and mineral element efficiencies under optimal growth conditions. Plants, 13(7), 917. https://doi.org/10.3390/plants13070917

Azevedo, V. M., Fernandes, J. A., De Souza Andrade, G., De Moraes, P. M., Magurran, A. E., Pelicice, F. M. y Giarrizzo, T. (2024). An overview of vinasse pollution in aquatic ecosystems in Brazil. Environmental Management, 74(6), 1037-1044. https://doi.org/10.1007/s00267-024-01999-x

Bamba, J. N. Y., Almendrala, M. C., Caparanga, A. R. y Doma, B. T. (2021). Effect of biochemical pretreatment and nutrient supplementation on anaerobic co-digestion of sugarcane press mud and distillery effluent. IOP Conference Series: Earth and Environmental Science, 801(1), 012001. https://doi.org/10.1088/1755-1315/801/1/012001

Barroso, G. M., De Carvalho, A. J. E., Custódio, I. G., Correa, J. M., Duque, T. S., Silva, D. V., Fernándes, B. C. C., Batista, L. P. y Dos Santos, J. B. (2022). Sensitivity of Eucalyptus clones to herbicides associated with foliar fertilizers. Forests, 13(9), 1490. https://doi.org/10.3390/f13091490

Beltrán, M. E. y Bernal, A. A. (2022). Biofertilizantes: Alternativa biotecnológica para los agroecosistemas. Revista Mutis, 12(1). https://doi.org/10.21789/22561498.1771

Bridhikitti, A., Kaewsuk, J., Karaket, N., Friend, R., Sallach, B., Chong, J. P. J. y Redeker, K. R. (2023). Balancing agriculture and industry through waste utilization for sugarcane sustainability. Sustainability, 15(20), 14711. https://doi.org/10.3390/su152014711

Brito, L. F. P. D., Espíndola, E. L. G. y Ogura, A. P. (2024). Tolerance of free-floating aquatic macrophytes to sugarcane vinasse and its implications for phytoremediation strategies. Journal of Water, Sanitation and Hygiene for Development, 14(4), 325-331. https://doi.org/10.2166/washdev.2024.240

Calcan, S. I., Pârvulescu, O. C., Ion, V. A., Răducanu, C. E., Bădulescu, L., Madjar, R., Dobre, T., Egri, D., Moț, A., Iliescu, L. M. y Jerca, I. O. (2022). Effects of biochar on soil properties and tomato growth. Agronomy, 12(8), 1824. https://doi.org/10.3390/agronomy12081824

Cárdenas, A. y Vélez, J. (2024). Conflictos de usos del suelo como aporte a la sostenibilidad agroproductiva del bosque Politécnico de la ESPAM MFL [bachelorThesis, Escuela Superior Politécnica de Manabí Manuel Felix López]. https://repositorio.espam.edu.ec/handle/ 42000/2344

Cedeño, E. P., Dilas, J. O. y Carrillo, M. D. (2024). Cambios de algunas propiedades químicas en tres suelos salinos, tratados con cinco enmiendas cálcicas. Agronomía Costarricense, 111-123. https://doi.org/10.15517/rac.v48i1.59139

Chen, S., Li, P., Tan, S., Pu, X., Zhou, Y., Hu, K., Huang, W. y Liu, L. (2021). Combined proteomic and physiological analysis of chloroplasts reveals drought and recovery response mechanisms in Nicotiana benthamiana. Plants, 10(6), 1127. https://doi.org/10.3390/plants10061127

Chuchert, S., Nualsri̇, C. y Soonsuwon, W. (2022). Genetic variability and diversity of upland rice landraces. Turkish Journal Of Field Crops, 27(2), 175-181. https://doi.org/10.17557/tjfc. 998285

De Sousa, T. A. T., Do Monte, F. P., Silva, J. V. D. N., Lopes, W. S., Leite, V. D., Van Lier, J. B. y De Sousa, J. T. (2021). Alkaline and acid solubilisation of waste activated sludge. Water Science and Technology, 83(12), 2980-2996. https://doi.org/10.2166/wst.2021.179

Duarte, F. P., Silva, A. F. R., Lange, L. C., Amaral, M. C. S., Neta, L. S. D. F. y Moravia, W. G. (2023). Vinasse processing by electrodialysis combined with nanofiltration: Emphasis on process optimization and environmental sustainability. Water Science & Technology, wst2023355. https://doi.org/10.2166/wst.2023.355

Ferreira, L. C., Moreira, B. R. D. A., Montagnolli, R. N., Prado, E. P., Viana, R. D. S., Tomaz, R. S., Cruz, J. M., Bidoia, E. D., Frias, Y. A. y Lopes, P. R. M. (2021). Green manure species for phytoremediation of soil with tebuthiuron and vinasse. Frontiers in Bioengineering and Biotechnology, 8, 613642. https://doi.org/10.3389/fbioe.2020.613642

Gao, W.-T. y Su, W.-H. (2024). Weed management methods for herbaceous field crops: A review. Agronomy, 14(3), 486. https://doi.org/10.3390/agronomy14030486

González Suárez A., Hernández Alfonso I. y Pereda Reyes I. (2019). Pretratamiento alcalino de bagazo de caña para mejorar la producción de biometano. Revista Centro Azúcar, 46, 79-88. https://centroazucar.uclv.edu.cu

González, J. A., Buedo, S. E., Prado, F. E. y Álvarez, S. (2018). Efecto de la vinaza sobre el crecimiento y productividad de la Soja (Glycine max) en condiciones semicontroladas. Boletín de la Sociedad Argentina de Botánica, 53(4), 597-608. https://doi.org/10.31055/1851.2372.v53.n4.21982

González, J. A., Languasco, P. y Prado, F. E. (2021). Efecto de las vinazas sobre la germinación de soja, trigo y quinoa en condiciones controladas. Boletín de la Sociedad Argentina de Botánica, 49(4), Article 4. https://doi.org/10.31055/1851.2372.v49.n4.9825

Gwatidzo, V., Chipomho, J. y Parwada, C. (2023). Understanding mechanisms of herbicide selectivity in agro-ecosystems: A review. Advanced Chemicobiology Research, 77-86. https://doi.org/10.37256/acbr.2120232351

Hamouzová, K., Sen, M. K., Bharati, R., Košnarová, P., Chawdhery, M. R. A., Roy, A. y Soukup, J. (2023). Calcium signalling in weeds under herbicide stress: An outlook. Frontiers in Plant Science, 14, 1135845. https://doi.org/10.3389/fpls.2023.1135845

Házi, J., Purger, D., Penksza, K. y Bartha, S. (2023). Interaction of management and spontaneous succession suppresses the impact of harmful native dominant species in a 20-year-long experiment. Land, 12(1), 149. https://doi.org/10.3390/land12010149

Hirzel, J., Meier, S., Morales, A., Undurraga, P. y Salazar, F. (2021). Soil chemical properties and wheat production in three Andisol with applications of materials from the cellulose industry. Revista Brasileira de Ciência Do Solo, 45, e0200193. https://doi.org/10.36783/18069657rbcs20200193

Jolayemi, O. L., Malik, A. H., Ekblad, T., Fredlund, K., Olsson, M. E. y Johansson, E. (2022). Protein-based biostimulants to enhance plant growth—state-of-the-art and future direction with sugar beet as an example. Agronomy, 12(12), 3211. https://doi.org/10.3390/agronomy12123211

Kaur, R., Chahal, P. S., Shi, Y., Lawrence, N. C., Knezevic, S. Z. y Jhala, A. J. (2023). Effect of plant height on control of multiple herbicide-resistant Palmer amaranth (Amaranthus palmeri) in glufosinate/glyphosate-resistant corn. Frontiers in Agronomy, 5, 1293293. https://doi.org/10.3389/fagro.2023.1293293

Knauf, A. E., Litton, C. M., Cole, R. J., Sparks, J. P., Giardina, C. P., Gerow, K. G. y Quiñones‐Santiago, M. (2021). Nutrient‐use strategy and not competition determines native and invasive species response to changes in soil nutrient availability. Restoration Ecology, 29(5), e13374. https://doi.org/10.1111/rec.13374

Koskey, G., Mburu, S. W., Awino, R., Njeru, E. M. y Maingi, J. M. (2021). Potential use of beneficial microorganisms for soil amelioration, phytopathogen biocontrol, and sustainable crop production in smallholder agroecosystems. Frontiers in Sustainable Food Systems, 5, 606308. https://doi.org/10.3389/fsufs.2021.606308

Luz, D., Gomes, A., Simas, N., Heringer, O., Romão, O., Lovatti, W., Scherer, B., Filgueiras, P. y Kuster, R. (2020). Sugarcane waste products as source of phytotoxic compounds for agriculture. 9, 385-397. https://doi.org/10.30486/IJROWA.2020.1885536.1007

Mahajan, M., Singh, R., Gupta, P. y Chelliapan, S. (2024). Quantitative assessment of irrigation water and organic/inorganic amendment on biometric growth profiles of Abelmoschus esculentus and Solanum lycopersicum and their varieties. 26(7), 1735-1752. https://doi.org/10.2166/hydro.2024.394

Mahmoud, S., Siam, H., Taalab, A. y Mahamed, S. (2019). Significant use ofvinasse as a partial replacementwith chemical fertilizers sources for spinach and barley production and their effect on growth and nutrients composition of plant. Plant Archives, 19(1), 1593-1600.

Ma’rufah, S., Sari, R. y Rusdiana, R. Y. (2020). Pemanfaatan vinasse sebagai pupuk organik cair untuk meningkatkan pertumbuhan dan hasil bunga kol (Brassica oleracea var. Botrytis L.). Jurnal Penelitian Pertanian Terapan, 20(1), 18. https://doi.org/10.25181/jppt.v20i1.1552

Medina, J. T., Ayllon, M., Julca, C., Moreyra, G., Carrasco, L. A., Ancieta, C. A., Rodríguez, O. J., Avelino, C., Diaz, P. y Montaño, J. A. (2024). Processes coupled to electrocoagulation for the treatment of distillery wastewaters. Sustainability, 16(15), 6383. https://doi.org/10.3390/su16156383

Mensah, M., Tia, R., Adei, E. y De Leeuw, N. H. (2022). A DFT mechanistic study on base-catalyzed cleavage of the β-O-4 ether linkage in lignin: Implications for selective lignin depolymerization. Frontiers in Chemistry, 10, 793759. https://doi.org/10.3389/fchem.2022.793759

Morales Avendaño, E. D., Navarrete Álava, J., Garzón Cedeño, F., y Zambrano Lara, M. (2023). Aplicación del NaHCO3 como estrategia físico-química para mitigar el impacto ambiental de la vinaza producida en la destilación de alcohol artesanal. La Técnica, 13(2), 93-101. DOI: https://doi.org/10.33936/latecnica.v13i2.6179

Otoya, A., Haro, E., Gutiérrez, L. y Solís, H. (2023). Vinaza. Evaluación de su impacto en un campo de cultivo (69). Religación Press. https://doi.org/10.46652/ReligacionPress.69

Parise, A. G., Bertoli, S. C. y Souza, G. M. (2021). Belowground interactions affect shoot growth in Eucalyptus urophylla under restrictive conditions. Plant Signaling & Behavior, 16(9), 1927589. https://doi.org/10.1080/15592324.2021.1927589

Pino, A. D., Casanova, O., Hernández, J., Takata, V. y Panissa, G. (2022). Vinasse for sugarcane crop nutrition: Accumulation and efficiency in the use of nutrients. Australian Journal of Crop Science, 16(09):2022, 1107-1116. https://doi.org/10.21475/ajcs.22.16.09.p3617

Portocarrero, R., Vera, J., Vallejo, J., Gerónimo, E., Costa, J. y Aparicio, V. (2023). Long-term vinasse application enhanced the initial dissipation of atrazine and ametryn in a sugarcane field in Tucumán, Argentina. https://doi.org/10.1002/ieam.4876

Rachman, L. M., Hartono, A., Hazra, F., Noorwicaksono, T., Wasono, K. B., Adityasari, A. D., Prabowo, B., Putri, N. y Davik. (2023). Essence, principle, and technique in utilization and converting vinasse waste to bio-organic fertilizer. IOP Conference Series: Earth and Environmental Science, 1133(1), 012023. https://doi.org/10.1088/1755-1315/1133/1/012023

Rawajfeh, K. (2021). Precipitation of solid waste in olive mill wastewater by coagulation using calcium carbonate (CaCO3). Jordanian Journal Of Engineering And Chemical Industries (JJECI), 4(3), 78-85. https://doi.org/10.48103/jjeci4102021

Rehling, F., Sandner, T. M. y Matthies, D. (2021). Biomass partitioning in response to intraspecific competition depends on nutrients and species characteristics: A study of 43 plant species. Journal of Ecology, 109(5), 2219-2233. https://doi.org/10.1111/1365-2745.13635

Repajić, M., Cegledi, E., Zorić, Z., Pedisić, S., Elez Garofulić, I., Radman, S., Palčić, I. y Dragović-Uzelac, V. (2021). Bioactive compounds in wild nettle (Urtica dioica L.) leaves and stalks: polyphenols and pigments upon seasonal and habitat variations. Foods, 10(1), 190. https://doi.org/10.3390/foods10010190

Sagwal, A., Wadhwa, P., Shubham y Kaushal, S. (2023). Essentiality of micronutrients in soil: A review. International Journal of Plant & Soil Science, 35(24), 56-65. https://doi.org/10.9734/ijpss/2023/v35i244297

Soares, A. D. A. V. L., Prado, R. D. M., Bertani, R. M. D. A., Da Silva, A. P. R., Deus, A. C. F., Kano, C. y Furlaneto, F. D. P. B. (2024). Contribution of using filter cake and vinasse as a source of nutrients for sustainable agriculture—A review. Sustainability, 16(13), 5411. https://doi.org/10.3390/su16135411

Soukaina, N., Chaimaa, M., Kabriti, M., Abdelmotalib, N., Naamane, A., Mohamed, C. y Nadia, I. (2022). Treatment of surface treatment effluents by electrocoagulation process using aluminium electrodes. Journal of Ecological Engineering, 23(1), 91-99. https://doi.org/10.12911/22998993/143974

Stephen, G. S., Shitindi, M. J., Bura, M. D., Kahangwa, C. A. y Nassary, E. K. (2024). Harnessing the potential of sugarcane-based liquid byproducts—Molasses and spentwash (vinasse) for enhanced soil health and environmental quality. A systematic review. Frontiers in Agronomy, 6, 1358076. https://doi.org/10.3389/fagro.2024.1358076

Tiwari, A. K. (2023). The role of organic farming in achieving agricultural sustainability: environmental and socio-economic impacts. Acta Biology Forum, 2(2), 29-32. https://doi.org/10.51470/ABF.2023.2.2.29

Torres, M. A., Valdez, A. L., Angelicola, M. V., Raimondo, E. E., Pajot, H. F. y Nieto, C. G. (2022). Cultivation of plant-growth promoters in vinasse: Contributions for a circular and green economy. Bioengineering. https://doi.org/10.1101/2022.12.28.522132

Toscano, P., Cutini, M., Cabassi, G., Pricca, N., Romano, E. y Bisaglia, C. (2022). Assessment of a deep burial destoning system of agrarian soils alternative to the stone removal and on-site crushing. AgriEngineering, 4(1), 156-170. https://doi.org/10.3390/agriengineering4010011

Vieira, G. S., Fonseca, A. U., Rocha, B. M., Sousa, N. M., Ferreira, J. C., Felix, J. P., Lima, J. C. y Soares, F. (2022). Insect predation estimate using binary leaf models and image-matching shapes. Agronomy, 12(11), 2769. https://doi.org/10.3390/agronomy12112769

Weng, X., Li, H., Ren, C., Zhou, Y., Zhu, W., Zhang, S. y Liu, L. (2022). Calcium regulates growth and nutrient absorption in poplar seedlings. Frontiers in Plant Science, 13, 887098. https://doi.org/10.3389/fpls.2022.887098

Yin, J., Deng, C. y Wang, X. (2019). Effects of long-term application of vinasse on physicochemical properties, heavy metals content and microbial diversity in sugarcane field soil. Sugar Tech. 21, 62-70. https://doi.org/10.1007/s12355-018-0630-2

Zielińska, M., Bułkowska, K. y Mikucka, W. (2021a). Valorization of distillery stillage for bioenergy production: A review. Energies, 14(21), 7235. https://doi.org/10.3390/en14217235

Publicado

2025-09-25

Como Citar

Guzmán Paredes, W., & Morales Avendaño, E. D. . (2025). La vinaza como bioherbicida y biofertilizante: una alternativa sostenible para la agricultura ecológica: Agricultura y Silvicultura. La Técnica. Revista De Las Agrociencias. ISSN 2477-8982, 15(2), 85–96. https://doi.org/10.33936/latecnica.v15i2.7355

Edição

Seção

Artículos