Comparative Study of Artificial Intelligence Tools and Their Impact on Web Development: An Approach Based on Angular and Node.js
DOI:
https://doi.org/10.33936/isrtic.v9i1.7345Keywords:
Artificial intelligence, code generation, Angular, Node.jsAbstract
This article presents a comparative study of artificial intelligence (AI) tools for web development, focusing on Angular and Node.js. ChatGPT, Gemini, GitHub Copilot, and DeepSeek were analyzed, evaluating their ability to generate functional code using SonarQube. A practical case study based on a billing system was implemented, assessing key metrics such as maintainability, reliability, and security. The results indicate that all backend tools generate maintainable and reliable code, although minor security vulnerabilities were identified. Frontend generation posed more challenges in terms of reliability and maintainability, with common issues such as variable declarations without reassignment and the presence of empty files. ChatGPT and DeepSeek excelled in usability and error resolution, while GitHub Copilot and Gemini showed limitations during the development stage. The study concludes that while these tools enhance productivity and reduce the manual coding workload, they heavily depend on the precision and detail of the instructions provided by the developer, as well as human supervision to ensure software quality and security.
Downloads
References
Abeliuk, A., & Gutiérrez, C. (2021). Historia y evoluación de la inteligencia artificial. Revista Bits de Ciencia, 21, 14–21. https://doi.org/10.71904/BITS.VI21.2767
Afrin, S., Call, J., Nguyen, K.-N., Chaparro, O., & Mastropaolo, A. (2025). Resource-efficient & effective code summarization. arXiv. https://arxiv.org/abs/2502.03617v1
Balsam, S., & Mishra, D. (2025). Web application testing—Challenges and opportunities. Journal of Systems and Software, 219, 112186. https://doi.org/10.1016/J.JSS.2024.112186
Chandramouli, P., Codabux, Z., & Vidoni, M. (2022). analyzeR: A SonarQube plugin for analyzing object-oriented R Packages. SoftwareX, 19, 101113. https://doi.org/10.1016/J.SOFTX.2022.101113
Cho, K., Park, Y., Kim, J., Kim, B., & Jeong, D. (2025). Conversational AI forensics: A case study on ChatGPT, Gemini, Copilot, and Claude. Forensic Science International: Digital Investigation, 52, 301855. https://doi.org/10.1016/J.FSIDI.2024.301855
Clean-code-based analysis | SonarQube Docs. (n.d.). Retrieved February 10, 2025, from https://docs.sonarsource.com/sonarqube-server/10.7/core-concepts/clean-code/codeanalysis/
Code metrics & SonarQube. (n.d.). Retrieved February 10, 2025, from https://docs.sonarsource.com/sonarqubeserver/10.7/user-guide/code-metrics/metrics-definition/
Colther, C., & Doussoulin, J. P. (2024). Artificial intelligence: Driving force in the evolution of human knowledge. Journal of Innovation & Knowledge, 9(4), 100625. https://doi.org/10.1016/J.JIK.2024.100625
DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., ... Pan, Z. (2024). DeepSeek-V3 Technical Report. arXiv. https://arxiv.org/abs/2412.19437v1
France, S. L. (2024). Navigating software development in the ChatGPT and GitHub Copilot era. Business Horizons, 67(5), 649–661. https://doi.org/10.1016/J.BUSHOR.2024.05.009
Hegde, N. N., & G, M. (2024). Prototype pollution detection for Node.Js applications: A review. Journal of Cyber Security, Privacy Issues and Challenges, 3(2), 23–32. https://matjournals.net/engineering/index.php/JCSPIC/article/view/682
Kuhail, M. A., Mathew, S. S., Khalil, A., Berengueres, J., & Shah, S. J. H. (2024). “Will I be replaced?” Assessing ChatGPT’s effect on software development and programmer perceptions of AI tools. Science of Computer Programming, 235, 103111. https://doi.org/10.1016/J.SCICO.2024.103111
Leung, M., & Murphy, G. (2023). On automated assistants for software development: The role of LLMs. In Proceedings - 2023 38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023 (pp. 1737–1741). https://doi.org/10.1109/ASE56229.2023.00035
Mao, Q., & Li, Y. (2024). Blockchain evolution, artificial intelligence and ferrous metal trade. Resources Policy, 98, 105369. https://doi.org/10.1016/J.RESOURPOL.2024.105369
Mercer, S., Spillard, S., & Martin, D. P. (2025). Brief analysis of DeepSeek R1 and its implications for generative AI. arXiv. https://arxiv.org/abs/2502.02523v3
Muthumanikandan, V., & Ram, S. (2024). Visistant: A conversational chatbot for natural language to visualizations with Gemini large language models. IEEE Access. https://doi.org/10.1109/ACCESS.2024.346554199
Ng, K. K., Fauzi, L., Leow, L., & Ng, J. (2024). Harnessing the potential of Gen-AI coding assistants in public sector software development. arXiv. https://arxiv.org/abs/2409.17434v1
Ollila, R., Mäkitalo, N., & Mikkonen, T. (2022). Modern web frameworks: A comparison of rendering performance. Journal of Web Engineering, 21(3), 789–813. https://doi.org/10.13052/JWE1540-9589.21311
Rahikainen, M. (2021). Web application in Angular and Ionic. https://www.theseus.fi/handle/10024/702876
Roman Gallardo, A., Roman Herrera Morales, J., Sandoval Carrillo, S., & Alvarez Cardenas, O. (2024). Uso de herramientas de IA generativa para la automatización del desarrollo de software: Un caso de estudio. Ingeniantes, 3. https://citt.itsm.edu.mx/ingeniantes/articulos/ingeniantes11no1vol3/19.pdf
Savani, N. (2023). The future of web development: An in-depth analysis of micro-frontend approaches. International Journal of Computer Trends and Technology. https://www.researchgate.net/publication/376477757
Siam, M. K., Gu, H., & Cheng, J. Q. (2024). Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for programmers. arXiv. https://arxiv.org/abs/2411.09224
Software qualities | SonarQube Docs. (n.d.). Retrieved February 10, 2025, from https://docs.sonarsource.com/sonarqubeserver/10.7/core-concepts/clean-code/software-qualities/
Tao, C., Gao, J., & Wang, T. (2019). Testing and quality validation for AI software—Perspectives, issues, and practices. IEEE Access, 7, 120164–120175. https://doi.org/10.1109/ACCESS.2019.2937107
Usman Hadi, M., Al Tashi, Q., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Bilal Shaikh, M., Akhtar, N., Zohaib Hassan, S., Shoman, M., Wu, J., Mirjalili, S., Shah, M., Al-Tashi, Q., & Ali Al-Garadi, M. (2024). Large language models: A comprehensive survey of its applications, challenges, limitations, and future prospects. Authorea Preprints. https://doi.org/10.36227/TECHRXIV.23589741.V740
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dustin Adrian Cabrera Lavayen, Ricardo Josue Cabrera Calderón, Joofre Antonio Honores Tapia, John Patricio Orellana Preciado

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Articles submitted to this journal for publication will be released for open access under a Creative Commons Attribution Non-Commercial No Derivative Works licence (http://creativecommons.org/licenses/by-nc-nd/4.0).
The authors retain copyright, and are therefore free to share, copy, distribute, perform and publicly communicate the work under the following conditions: Acknowledge credit for the work specified by the author and indicate if changes were made (you may do so in any reasonable way, but not in a way that suggests that the author endorses your use of his or her work. Do not use the work for commercial purposes. In case of remixing, transformation or development, the modified material may not be distributed.



