Comparative Study of Artificial Intelligence Tools and Their Impact on Web Development: An Approach Based on Angular and Node.js

Authors

  • Dustin Adrian Cabrera Lavayen Universidad Técnica de Machala, Facultad de Ingeniería Civil, Machala, El Oro, Ecuador. https://orcid.org/0009-0001-6772-6645
  • Ricardo Josue Cabrera Calderón Universidad Técnica de Machala, Facultad de Ingeniería Civil, Machala, El Oro, Ecuador. https://orcid.org/0009-0001-7847-0315
  • Joofre Antonio Honores Tapia Universidad Técnica de Machala, Facultad de Ingeniería Civil, Machala, El Oro, Ecuador. https://orcid.org/0000-0001-8612-3025
  • John Patricio Orellana Preciado Universidad Técnica de Machala, Facultad de Ingeniería Civil, Machala, El Oro, Ecuador. https://orcid.org/0000-0001-7482-1440

DOI:

https://doi.org/10.33936/isrtic.v9i1.7345

Keywords:

Artificial intelligence, code generation, Angular, Node.js

Abstract

This article presents a comparative study of artificial intelligence (AI) tools for web development, focusing on Angular and Node.js. ChatGPT, Gemini, GitHub Copilot, and DeepSeek were analyzed, evaluating their ability to generate functional code using SonarQube. A practical case study based on a billing system was implemented, assessing key metrics such as maintainability, reliability, and security. The results indicate that all backend tools generate maintainable and reliable code, although minor security vulnerabilities were identified. Frontend generation posed more challenges in terms of reliability and maintainability, with common issues such as variable declarations without reassignment and the presence of empty files. ChatGPT and DeepSeek excelled in usability and error resolution, while GitHub Copilot and Gemini showed limitations during the development stage. The study concludes that while these tools enhance productivity and reduce the manual coding workload, they heavily depend on the precision and detail of the instructions provided by the developer, as well as human supervision to ensure software quality and security.

Downloads

Download data is not yet available.

References

Abeliuk, A., & Gutiérrez, C. (2021). Historia y evoluación de la inteligencia artificial. Revista Bits de Ciencia, 21, 14–21. https://doi.org/10.71904/BITS.VI21.2767

Afrin, S., Call, J., Nguyen, K.-N., Chaparro, O., & Mastropaolo, A. (2025). Resource-efficient & effective code summarization. arXiv. https://arxiv.org/abs/2502.03617v1

Balsam, S., & Mishra, D. (2025). Web application testing—Challenges and opportunities. Journal of Systems and Software, 219, 112186. https://doi.org/10.1016/J.JSS.2024.112186

Chandramouli, P., Codabux, Z., & Vidoni, M. (2022). analyzeR: A SonarQube plugin for analyzing object-oriented R Packages. SoftwareX, 19, 101113. https://doi.org/10.1016/J.SOFTX.2022.101113

Cho, K., Park, Y., Kim, J., Kim, B., & Jeong, D. (2025). Conversational AI forensics: A case study on ChatGPT, Gemini, Copilot, and Claude. Forensic Science International: Digital Investigation, 52, 301855. https://doi.org/10.1016/J.FSIDI.2024.301855

Clean-code-based analysis | SonarQube Docs. (n.d.). Retrieved February 10, 2025, from https://docs.sonarsource.com/sonarqube-server/10.7/core-concepts/clean-code/codeanalysis/

Code metrics & SonarQube. (n.d.). Retrieved February 10, 2025, from https://docs.sonarsource.com/sonarqubeserver/10.7/user-guide/code-metrics/metrics-definition/

Colther, C., & Doussoulin, J. P. (2024). Artificial intelligence: Driving force in the evolution of human knowledge. Journal of Innovation & Knowledge, 9(4), 100625. https://doi.org/10.1016/J.JIK.2024.100625

DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., ... Pan, Z. (2024). DeepSeek-V3 Technical Report. arXiv. https://arxiv.org/abs/2412.19437v1

France, S. L. (2024). Navigating software development in the ChatGPT and GitHub Copilot era. Business Horizons, 67(5), 649–661. https://doi.org/10.1016/J.BUSHOR.2024.05.009

Hegde, N. N., & G, M. (2024). Prototype pollution detection for Node.Js applications: A review. Journal of Cyber Security, Privacy Issues and Challenges, 3(2), 23–32. https://matjournals.net/engineering/index.php/JCSPIC/article/view/682

Kuhail, M. A., Mathew, S. S., Khalil, A., Berengueres, J., & Shah, S. J. H. (2024). “Will I be replaced?” Assessing ChatGPT’s effect on software development and programmer perceptions of AI tools. Science of Computer Programming, 235, 103111. https://doi.org/10.1016/J.SCICO.2024.103111

Leung, M., & Murphy, G. (2023). On automated assistants for software development: The role of LLMs. In Proceedings - 2023 38th IEEE/ACM International Conference on Automated Software Engineering, ASE 2023 (pp. 1737–1741). https://doi.org/10.1109/ASE56229.2023.00035

Mao, Q., & Li, Y. (2024). Blockchain evolution, artificial intelligence and ferrous metal trade. Resources Policy, 98, 105369. https://doi.org/10.1016/J.RESOURPOL.2024.105369

Mercer, S., Spillard, S., & Martin, D. P. (2025). Brief analysis of DeepSeek R1 and its implications for generative AI. arXiv. https://arxiv.org/abs/2502.02523v3

Muthumanikandan, V., & Ram, S. (2024). Visistant: A conversational chatbot for natural language to visualizations with Gemini large language models. IEEE Access. https://doi.org/10.1109/ACCESS.2024.346554199

Ng, K. K., Fauzi, L., Leow, L., & Ng, J. (2024). Harnessing the potential of Gen-AI coding assistants in public sector software development. arXiv. https://arxiv.org/abs/2409.17434v1

Ollila, R., Mäkitalo, N., & Mikkonen, T. (2022). Modern web frameworks: A comparison of rendering performance. Journal of Web Engineering, 21(3), 789–813. https://doi.org/10.13052/JWE1540-9589.21311

Rahikainen, M. (2021). Web application in Angular and Ionic. https://www.theseus.fi/handle/10024/702876

Roman Gallardo, A., Roman Herrera Morales, J., Sandoval Carrillo, S., & Alvarez Cardenas, O. (2024). Uso de herramientas de IA generativa para la automatización del desarrollo de software: Un caso de estudio. Ingeniantes, 3. https://citt.itsm.edu.mx/ingeniantes/articulos/ingeniantes11no1vol3/19.pdf

Savani, N. (2023). The future of web development: An in-depth analysis of micro-frontend approaches. International Journal of Computer Trends and Technology. https://www.researchgate.net/publication/376477757

Siam, M. K., Gu, H., & Cheng, J. Q. (2024). Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for programmers. arXiv. https://arxiv.org/abs/2411.09224

Software qualities | SonarQube Docs. (n.d.). Retrieved February 10, 2025, from https://docs.sonarsource.com/sonarqubeserver/10.7/core-concepts/clean-code/software-qualities/

Tao, C., Gao, J., & Wang, T. (2019). Testing and quality validation for AI software—Perspectives, issues, and practices. IEEE Access, 7, 120164–120175. https://doi.org/10.1109/ACCESS.2019.2937107

Usman Hadi, M., Al Tashi, Q., Qureshi, R., Shah, A., Muneer, A., Irfan, M., Zafar, A., Bilal Shaikh, M., Akhtar, N., Zohaib Hassan, S., Shoman, M., Wu, J., Mirjalili, S., Shah, M., Al-Tashi, Q., & Ali Al-Garadi, M. (2024). Large language models: A comprehensive survey of its applications, challenges, limitations, and future prospects. Authorea Preprints. https://doi.org/10.36227/TECHRXIV.23589741.V740

Published

2025-04-04

How to Cite

[1]
Cabrera Lavayen, D.A., Cabrera Calderón, R.J., Honores Tapia, .J.A. and Orellana Preciado, J.P. 2025. Comparative Study of Artificial Intelligence Tools and Their Impact on Web Development: An Approach Based on Angular and Node.js . Informática y Sistemas. 9, 1 (Apr. 2025), 30–40. DOI:https://doi.org/10.33936/isrtic.v9i1.7345.

Issue

Section

Regular Papers

Most read articles by the same author(s)