Oxidative stability of sunflower oil under different storage conditions
DOI:
https://doi.org/10.33936/la_tecnica.v0i26.4108Keywords:
fatty acids, storage, stability, sunflower oil oxidation, peroxide.Abstract
The main alteration of foods that contain oils or fats is due to the oxidation of the fatty acid radicals of the glyceric compounds to form aldehydes, ketones and volatile acids, which are responsible for the unpleasant smell and rancid taste, generating rejection in the consumers. Therefore, the objective of the research consisted in evaluating the oxidative stability of sunflower oil in different storage conditions (capped containers and uncapped containers) and under controlled environmental conditions (27 ± 2 °C; HR: 75 ± 10%). The follow-up was performed with constant periods, monitoring the oxidation through the peroxide index described by the American Oil Chemists’ Society (AOCS), using the Kruskal Wallis test to statistically analyze the data; showing that during the weeks evaluated there was no significant difference (p>0.05). However, under the storage conditions there was a significant difference (p<0.05), with which greater oxidative stability of sunflower oil was determined with capped containers as opposed to uncapped ones.
Downloads
References
Alberca, S., y Huanca, M. (2015). Evaluación del índice de estabilidad oxidativa del aceite de moringa (Moringa oleifera) por el método rancimat. Ingenieria:Ciencia, Tecnología e Innovación, 2(2), 50-69.
American Oil Chemists’ Society. AOCS Cd 8b-90. (2017). Peroxide Value Acetic Acid-Isooctane Method. https://www.scribd.com/document/124556418/AOCS-CD-8b-90-Peroxidos.
Campbell, E. (1983). Sunflower oil. Journal of the American Oil Chemists’ Society, 60(2Part2), 387-392. https://doi.org/10.1007/BF02543524
Căpruciu, R. and Săvescu, P. (2012). Analysis of the oxidation sunflower oil bottled in containers of different capacities. Journal of Agroalimantary Processes and Technologies, 18(4), 315-317.
Cert, R. (2017). Estudio de la estabilidad oxidativa de aceites funcionalizados con derivados de hidroxitirosol [Tesis doctoral, Universidad de Sevilla]. https://idus.us.es/handle/11441/71353
Crapiste, G., Brevedan, M. and Carelli, A. (1999). Oxidation of sunflower oil during storage. Journal of the American Oil Chemists’ Society, 76(12), 1437. https://doi.org/10.1007/s11746-999-0181-5
Díaz, M., Ledea, O., Gómez, M., Garcés, R., Alaiz, M. y Martínez, E. (2009). Estudio comparativo de la ozonización de aceites de girasol modificados genéticamente y sin modificar. Química Nova, 32(9), 2467-2472. https://doi.org/10.1590/S0100-40422009000900041
Ettalibi, F., El Antari, A., Gadhi, C. and Harrak, H. (2020). Oxidative stability at different storage conditions and adulteration detection of prickly pear seeds oil. Journal of Food Quality, 1-12. https://doi.org/10.1155/2020/8837090
Fanali, C., Dugo, L., Cacciola, F., Beccaria, M., Grasso, S., Dachà, M., Dugo, P. and Mondello, L. (2011). Chemical characterization of Sacha Inchi (Plukenetia volubilis L.) oil. Journal of Agricultural and Food Chemistry, 59(24), 13043-13049. https://doi.org/10.1021/jf203184y
García, A. (2019). Obtención de aceites comestibles a partir de nuevas semillas de girasol enriquecidas en fitoesteroles [Tesis doctoral, Universidad Pablo de Olavide]. https://rio.upo.es/xmlui/handle/10433/7571
Ghazi, Z., Ramdani, M., Fauconnier, M., Mahi, B. and Cheikh, R. (2013). Composition of seed oil of Opuntia ficus indica and Opuntia dillenii from Morocco. Journal of Materials and Environmental Science, 4(6), 967-972.
Gray, J. (1978). Measurement of lipid oxidation: A review. Journal of the American Oil Chemists’ Society, 55(6), 539-546. https://doi.org/10.1007/BF02668066
Guillén, M., Ruiz, A., Cabo, N., Chirinos, R. and Pascual, G. (2003). Characterization of sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. Journal of the American Oil Chemists’ Society, 80(8), 755-762. https://doi.org/10.1007/s11746-003-0768-z
Instituto Ecuatoriano de Normalización. NTE-INEN-26. (2012). Aceite de Girasol. Requisitos. http://apps.normalizacion.gob.ec/descarga/
Ledea, O., Fernández, L., Gil, D., Tena, N., Garcés, R., Martínez, E. and Salas, J. (2019). Characterization of different ozonized sunflower oils I. Chemical changes during ozonization. Grasas y Aceites, 70(4), 329. https://doi.org/10.3989/gya.1166182
Mantilla, M. and Jara, D. (2019). Índice de oxidabilidad del aceite de Helianthus annuus L. “Girasol” expuesto a calentamiento discontinuo en frituras de carne fresca y desecada. Agroindustrial Science, 9(1), 39-46. http://dx.doi.org/10.17268/agroind.sci.2019.01.05
Navas, P. (2010). Componentes minoritarios y propiedades antioxidantes de aceites vírgenes y tortas residuales obtenidos por presión en frio a partir de fuentes vegetales convencionales y no convencionales. [Tesis doctoral, Universidad de Castilla-La Mancha]. https://dialnet.unirioja.es/servlet/tesis?codigo=87568
Paucar, L., Salvador, R., Guillén, J., Capa, J. y Moreno, C. (2015). Estudio comparativo de las características físico-químicas del aceite de sacha inchi (Plukenetia volubilis l.), aceite de oliva (Olea europaea) y aceite crudo de pescado. Scientia Agropecuaria, 6(4), 279-290. https://doi.org/10.17268/sci.agropecu.2015.04.05
Ramezani, R. (2004). The effect of packaging materials and storage condition on the oxidative stability of refined sunflower oil. Food Science and Technology Research, 10(3), 350-354. https://doi.org/10.3136/fstr.10.350
Rodríguez, G., Villanueva, E., Glorio, P., y Baquerizo, M. (2015). Estabilidad oxidativa y estimación de la vida útil del aceite de sacha inchi (Plukenetia volubilis L.). Scientia Agropecuaria, 6(3), 155-163. https://doi.org/10.17268/sci.agropecu.2015.03.02
Romanić, R., Dimić, E., Lazić, V. and Vujasinović, V. (2009). Oxidative stability and tocopherol content of refined sunflower oil during long-term storage in different commercial packagings. Acta Alimentaria, 38(3), 319-327. https://doi.org/10.1556/AAlim.2009.0001
Salma, Z., Gharby, G. and El Hadek, H. (2013). Physicochemical characterization of Opuntia ficus-indica seed oil from Morocco. Biosciences Biotechnology Research Asia, 10(1). https://doi.org/10.13005/bbra
Tuğba, I. and Medeni, M. (2015). Effect of the phytochemicals curcumin, cinnamaldehyde, thymol and carvacrol on the oxidative stability of corn and palm oils at frying temperatures. Journal of Food Science and Technology, 52(12), 8041-8049. https://doi.org/10.1007/s13197-015-1913-1
Vergara, C. (2017). Efecto del aceite esencial de canela en los parámetros químicos y estabilidad oxidativa del aceite de palma durante un tratamiento de almacenamiento acelerado [Tesis de máster, Universitat Politècnica de València]. http://polipapers.upv.es/index.php/IA/article/view/3293
Villanueva, E., Rodríguez, G., Aguirre, E. and Castro, V. (2017). Influence of antioxidants on oxidative stability of the oil Chia (Salvia hispanica L.) by rancimat. Scientia Agropecuaria, 8(1), 19-27. https://doi.org/10.17268/sci.agropecu.2017.01.02
Warner, K. y Eskin, M. (1995). Métodos para acceder a la calidad y estabilidad de los aceites y alimentos que contienen grasas (1era Ed.). Publicaciones de AOCS. https://doi.org/10.1201/9781439831984Zaunschirm, M., Pignitter, M., Kienesberger, J., Hernler, N., Riegger, C., Eggersdorfer, M. and Somoza, V. (2018). Contribution of the ratio of tocopherol homologs to the oxidative stability of commercial vegetable oils. Molecules, 23(1), 1-15. https://doi.org/10.3390/molecules23010206
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Mabel Leonela Laz Mero, Miguel Alejandro Tuárez Párraga, Rosa Alexandra Córdova-Mosquera

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.


