Determination of the chemical composition of the essential oil from Arazá (Eugenia stipitata) leaf residues and possible agroindustrial applications
Agroindustry
DOI:
https://doi.org/10.33936/latecnica.v15i1.7000Keywords:
extraction processes, yield, essential oils, ‘Arazá’, chemical composition.Abstract
The use of plant waste is a topic of current interest due to the environmental effects it causes on the environment. The waste from the leaves of Arazá (Eugenia stipitata Mc Vaugh) is not used in Ecuador and in the Amazonian Experimental Research and Production Center, located in the canton of Santa Clara, province of Pastaza, a significant amount of waste is obtained from this type of crop. , therefore the objective of the study was to determine the chemical composition of its essential oil, using three extraction methods, to evaluate the effectiveness of these methods in terms of performance and establish their possible applications in the agroindustrial area. Three methods were used to extract the essential oil: steam drag, maceration and ultrasound-assisted extraction; To determine the chemical components, gas chromatography coupled to mass spectrometry was used. The results determined that ultrasound-assisted extraction turned out to be more efficient, with a yield of 2.17%, Phenols (47.75%), Hydrocarbons (35.51%), Acids and Esters (6.10%) were identified as major components; In steam distillation, although less efficient in terms of 0.01% yield, Terpenes (57.57%), Alcohols and Other Compounds (36.57%), Sesquiterpenes (5.85%) were identified; and in the case of maceration it gave a 1.5% yield, Phenols (75.84%), Esters and Acids (12.91%) and Amides (6.17%) were identified. This rich composition of bioactive components highlights its importance as waste due to its applications in the food, pharmaceutical, cosmetic and phytosanitary industries.
Downloads
References
Acosta-Vega, L., Moreno, D. A., y Cuéllar Álvarez, L. N. (2024). Arazá: Eugenia stipitata Mc Vaught as a Potential Functional Food. Foods, 13(15), 2310. https://doi.org/10.3390/foods13152310
Ashaq, B., Rasool, K., Habib, S., Bashir, I., Nisar, N., Mustafa, S., Ayaz, Q., Nayik, G. A., Uddin, J., Ramniwas, S., Mugabi, R., and Wani, S. M. (2024). Insights into chemistry, extraction and industrial application of lemon grass essential oil -A review of recent advances. Food Chemistry, X, 22, 101521. https://doi.org/https://doi.org/10.1016/j.fochx.2024.101521
Božović, M., Navarra, A., Garzoli, S., Pepi, F., and Ragno, R. (2017). Esential oils extraction: a 24-hour steam distillation systematic methodology. Natural Product Research, 31(20), 2387-2396. https://doi.org/https://doi.org/10.1080/14786419.2017.1309534
Briones-Sornoza, H. R., y Guerrero-Intriago, D. A. (2019). Extracción de aceites esenciales de mandarina (Citrus reticulata) y palo santo (Bursera graveolens) por el método de arrastre de vapor. Revista Científica INGENIAR: Ingeniería, Tecnología e Investigación, 2(3), 14-23. https://doi.org/DOI: https://doi.org/10.46296/ig.v2i3.0007
Cedeño Cevallos, J. L., Navarrete Alcívar, M. A., Sánchez Mendoz, V., y Moreira Mendoza, C. A. (2023). Eficacia en la extracción de aceite a partir de especies vegetales. Revista Colón Ciencias, Tecnología y Negocios, 10(2), 1-16. https://doi.org/10.48204/j.colonciencias.v10 n2.a4137
Chen, Y., Xu, F., Pang, M., Jin, X., Lv, H., Li, Z., and Lee, M. (2022). Microwave-assisted hydrodistillation extraction based on microwave-assisted preparation of deep eutectic solvents coupled with GC-MS for analysis of essential oils from clove buds. Sustainable Chemistry and Pharmacy, 27, 100695. https://doi.org/https://doi.org/10.1016/j.scp. 2022.100695
da Costa, J. S., da Cruz, E. de N. S., Setzer, W. N., da Silva, J. K. do R., Maia, J. G. S., y Figueiredo, P. L. B. (2020). Essentials oils from Brazilian Eugenia and Syzygium species and their biological activities. Biomolecules, 10(8), 1155. https://doi.org/10.3390/biom10081155
de Araújo, F. F., de Paulo Farias, D., Neri-Numa, I. A., and Pastore, G. M. (2021). Polyphenols and their applications: An approach in food chemistry and innovation potential. Food Chemistry, 338, 127535. https://doi.org/10.1016/j.foodchem.2020.127535
de Araújo, F. F., Neri-Numa, I. A., de Paulo Farias, D., da Cunha, G. R. M. C., and Pastore, G. M. (2019). Wild Brazilian species of Eugenia genera (Myrtaceae) as an innovation hotspot for food and pharmacological purposes. Food Research International, 121, 57-72. https://doi.org/10.1016/j.foodres.2019.03.018
Dzah, C. S., Duan, Y., Zhang, H., Wen, C., Zhang, J., Chen, G., and Ma, H. (2020). The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review. Food Bioscience, 35, 100547. https://doi.org/10.1016/j.fbio.2020.100547
Eddin, L. B., Jha, N. K., Meeran, M. F. N., Kesari, K. K., Beiram, R., and Ojha, S. (2021). Neuroprotective potential of limonene and limonene containing natural products. Molecules, 26(15), 4535. https://doi.org/10.3390/molecules26154535
Fajardo Contreras, J. D., Sánchez Plaza, F. A., Dueñas Rivadeneira, J. P., and Dueñas Rivadeneira, A. A. (2022). Extracción asistida por ultrasonido y su aplicación en la obtención de aceites vegetales. Centro Azúcar, 49, 125-143.
Ferrari, V., Ibañez, F., Cabrera, D., y Pintado, B. (2019). Compuestos bioactivos y capacidad antioxidante en frutos nativos del Uruguay. INNOTEC, 19. https://doi.org/10.26461/19.02
Franco, M. R. B., and Shibamoto, T. (2000). Volatile composition of some Brazilian fruits: Umbu-caja (Spondias citherea), Camu-camu (Myrciaria dubia), Araça-boi Eugenia stipitata), and Cupuaçu (Theobroma grandiflorum). Journal of Agricultural and Food Chemistry, 48(4), 1263-1265. https://doi.org/10.1021/jf9900074
González-Diaz, Y., y Véliz-Jaime, M. Y. (2020). Extracción y caracterización del aceite esencial de mango obtenido de residuos agroindustriales. Tecnología Química, 40, 488-501. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2224-61852020000300488&lng=es &tlng=es.
González-López, A. M., Quiñones Aguilar, E. E., y Rincón-Enríquez, G. (2016). Los compuestos bioactivos y tecnologías de extracción. Nanobio, 33-49. https://www.researchgate.net/ publication/328262044_2016_Gonzalez_et_al_terpenos
Hernández, M. S., Barrera, J. A., y Carrillo, Marcela. (2006). Arazá (V. y D. T. Ministerio de Ambiente & D. de B. Universidad Nacional de Colombia, Eds.; Primera). Instituto Amazónico de Investigaciones Científicas-Sinchi. https://sinchi.org.co/files/publicaciones/ publicaciones/pdf/araza_2web.pdf
Jerônimo, L. B., da Costa, J. S., Pinto, L. C., Montenegro, R. C., Setzer, W. N., Mourão, R. H. V., da Silva, J. K. R., Maia, J. G. S., and Figueiredo, P. L. B. (2021). Antioxidant and cytotoxic activities of Myrtaceae essential oils rich in terpenoids from Brazil. Natural Product Communications, 16(2), 1934578X2199615. https://doi.org/10.1177/1934578X 21996156
Medeiros, J. R., Medeiros, N., Medeiros, H., Davin, L. B., and Lewis, N. G. (2003). Composition of the bioactive essential oils from the leaves of Eugenia stipitata McVaugh ssp. sororia from the azores. Journal of Essential Oil Research, 15(4), 293-295. https://doi.org/10.1080/ 10412905.2003.9712145
Melo-Guerrero, M. C., Ortiz-Jurado, D. E., & Hurtado-Benavides, A. M. (2020). Comparación de la composición y de la actividad antioxidante del aceite esencial de manzanilla (Matricaria chamomilla L.) obtenido mediante extracción con fluidos supercríticos y otras técnicas verdes. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44, 845–856.
Nolazco Cama, D., Villanueva-Quejia, E., Hatta Sakoda, B., & Tellez Monzon, L. (2020). Extracción y caracterización química del aceite esencial de Eucalipto obtenido por microondas y ultrasonido. Revista de Investigaciones Altoandinas, 22, 274–284.
Orrego, C., Salgado, N., & Diaz, M. (2020). Productividad y competitividad fruticola andina. Disponible En Línea: Https://Www. Fontagro. Org/New/Uploads/Productos/16111_-_Producto_9. Pdf.
Pardo, F. T., Aparco, R. H., Quispe, I. M., Pacheco, N. F. F., Cerna, H. W. A., y Chipana, S. Q. (2023). Compuestos bioactivos y actividad antioxidante de aceites esenciales en hojas de plantas medicinales. Alfa Revista de Investigación en Ciencias Agronómicas y Veterinaria, 7, 547-559.
Paucarchuco Soto, J., Torres Gutiérrez, E. R., Javier Ninahuaman, H. J., y Flores Poma, I. G. (2023). Optimización de ultrasonido para extracción de aceites esenciales de manzanilla “Chamaemelum nobile” utilizando metodología superficie respuesta. KANYÚ, 1(1), 45-55. https://doi.org/10.61210/rck.v1i1.28
Putnik, P., Lorenzo, J., Barba, F., Roohinejad, S., Režek Jambrak, A., Granato, D., Montesano, D., & Bursać Kovačević, D. (2018). Novel Food Processing and Extraction Technologies of High-Added Value Compounds from Plant Materials. Foods, 7(7), 106. https://doi.org/10.3390/foods7070106
Rasul, M. G. (2018). Conventional Extraction Methods Use in Medicinal Plants, their Advantages and Disadvantages. International Journal of Basic Sciences and Applied Computing (IJBSAC), 2(6), 1–5. https://ijbsac.org/wp-content/uploads/papers/v2i6/F0082122618.pdf
Reyes-Álvarez, C. A., and Lanari, M. C. (2020). Storage stability of freeze-dried arazá (Eugenia stipitata Mc Vaugh) powders. Implications of carrier type and glass transition. LWT, 118, 108842. https://doi.org/https://doi.org/10.1016/j.lwt.2019.108842
Rodilla, J. M., Rosado, T., and Gallardo, E. (2024). Essential oils: Chemistry and food applications. Foods, 13(7), 1074. https://doi.org/10.3390/foods13071074
Ruiz, C., Díaz, C., y Rojas, R. (2015). Composición química de aceites esenciales de 10 plantas aromáticas peruanas. Revista de la Sociedad Química del Perú, 81, 81-94. <http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1810-634X2015000200002 &lng=es&nrm=iso>.
Sabat, M., Chavan, P., Sahni, O., Sudhakar, A., & Shelake, P. (2024). Chapter 8 - Aroma compounds from fruits waste. In S. P. Bangar & P. S. Panesar (Eds.), Adding Value to Fruit Wastes (pp. 215–231). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-443-13842-3.00008-3
Schrader, J., and Bohlmann, J. (2015). Biotechnology of isoprenoids. Vol. 148. Springer.
Shen, L., Pang, S., Zhong, M., Sun, Y., Qayum, A., Liu, Y., Rashid, A., Xu, B., Liang, Q., Ma, H., & Ren, X. (2023). A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrasonics Sonochemistry, 101, 106646. https://doi.org/https://doi.org/10.1016/j.ultsonch.2023.106646
Stegmayer, M. I., Fernández, L. N., Álvarez, N. H., Olivella, L., Gutiérrez, H. F., Favaro, M. A., y Derita, M. G. (2021). Aceites esenciales provenientes de plantas nativas para el control de hongos fitopatógenos que afectan a frutales. Fave. Sección Ciencias Agrarias, 20(1), 317-329. http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1666-771920210001003 17&lng=es&tlng=es.
Tekin, K., Akalın, M. K., and Şeker, M. G. (2015). Ultrasound bath-assisted extraction of essential oils from clove using central composite design. Industrial Crops and Products, 77, 954-960. https://doi.org/https://doi.org/10.1016/j.indcrop.2015.09.071
Tenorio Huamani, S. G., y Muñoz Cordero, C. V. (2021). Actividad antibacteriana in vitro del aceite esencial de las hojas de Eugenia stipitata McVaugh (arazá) frente a Staphylococcus aureus, Escherichia coli y Salmonella enterica sv Enteritidis. https://hdl.handle.net/20.500.12970/334
Wedamulla, N. E., Fan, M., Choi, Y.-J., and Kim, E.-K. (2022). Citrus peel as a renewable bioresource: Transforming waste to food additives. Journal of Functional Foods, 95, 105163. https://doi.org/10.1016/j.jff.2022.105163
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Angélica María Tasambay Salazar, Byron Giovanny Hidalgo Olmedo, Jannys Lizeth Rivera Barreto, Sting Brayan Luna Fox, Luis Ramón Bravo Sánchez

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.