Performance of the post-larvae of Penaeus vannamei (PL 32) fed with diets supplemented with biomass of Spirulina subsalsa.

Authors

  • Berenice Licet Andradez articulos cientificos
  • Miguel Guevara Instituto Superior de Formación Docente Salome Ureña
  • Elvira Herrera Instituto Oceanográfico de Venezuela, Universidad de Oriente
  • Rafael Pinto Universidade Federal do Rio Grande do Sul (FURG)

Keywords:

Cyanobacteria, Nutrition, Shrimp, Diet, Zootechnical parameter

Abstract

The inclusion of Spirulina in the nutrition of the initial stages of life of Penaeus vannamei, characterized as a filter feeder, represents an alternative for the shrimp industry, by providing a natural food that, due to its high percentages of proteins and carotenoids, would benefit the immune system of organisms making them more resistant to the presence of diseases, and consequently to their growth. The objective of this work was to determine the growth of P. vannamei (PL 32) post-larvae fed with diets supplemented with Spirulina subsalsa biomass. Before the test, the post-larvae were acclimatized for 48 h to laboratory conditions (29 ± 1 °C, 12:12 photoperiod (40 W light intensity), constant aeration and fed with EPILITE® commercial diet. During the trial, PL were fed doses of 5% of their biomass in each aquarium with ZEIGLER I-40® commercial food (40% crude protein) supplemented with S. subsalsa (62% PC) for 15 days, using three diets: diet A (100% commercial food-CF), B (25% Spirulina flour + 75% CF) and C (50% Spirulina flour + 50% CF), in triplicate. A daily determination of environmental parameters was performed and the zootechnical variables at the end of the trial. The results among diets showed significant differences, with biomass increase (g) A-69.0±5, B-37.7±3.5, and C-16.7±4.7; FCF A-0.7±0.01, B-0.8±0.03, and C-1.4±0.41; and Survival (%) A-45.0±2.5, B-35.5 ±0.5 and C-20.5±1.6. No differences were found among diets in terms of feed efficiency A-1.45±0.43, B-1.23± 0.29 and C-0.72±0.38. It is concluded that the biomass of S. subsalsa was able to satisfy the nutritional requirements of the postlarvae of P. vannamei subjected to culture, making it possible to replace up to 25% of the commercial feed (more expensive) with plant raw materials, guaranteeing good development, survival, physical condition, and a feeding efficiency comparable to the commercial control diet.

 

Downloads

Download data is not yet available.

References

Ahmed R.A., Jastaniah S.D., Alaidaroos B.A., Shafi M.E., El-Haroun E., Abd El-Aziz Y.M., Abd El Megeed O.H., Al-Qurashi M.M., Bahshwan S.M.A., Munir M.B., Abdul Kari Z., Mathew R.T., Eissa,M.E.H., Eissa El-S.H., Elfeky A. (2025). Effects of dietary Spirulina platensis supplementation on growth performance, whole body composition, antioxidant activity, histological alterations, and resistance to Vibrio parahaemolyticus in Pacific white shrimp, Litopenaeus vannamei. Aquac. Rep. 40:102606. https://doi.org/10.1016/j.aqrep.2024.102606

AlFadhly N.K.Z., Alhelfi N., Altemimi A.B., Verma D.K., Cacciola F., Narayanankutty A. (2022). Trends and technological advancements in the possible food applications of Spirulina and their health benefits: A review. Molecules 27:558 https://doi.org/10.3390/molecules27175584

Ashour M., Mabrouk M., Mansour A., Abdelhamid A., Kader M., Elokaby M., El-Nawsany M., Abdelwarith A., Younis E., Davies S., El-Haroun E., Naiel M. (2024). Impact of dietary administration of Arthrospira platensis free-lipid biomass on growth performance, body composition, redox status, immune responses, and related genes of Pacific white shrimp, Litopenaeus vannamei. PLoS ONE 19:e0300748. https://doi.org/10.1371/journal.pone.0300748

Belay A., Kato T., Ota Y. (1996). Spirulina (Arthrospira): Potential application as an animal feed supplement. J. Appl. Phycol. 8:303–311. https://doi.org/10.1007/BF02178573

Bendif E., Probert I., Schroeder D., De Vargas C. (2013). On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta). J. Appl. Phycol. 25:1763–1776. https://doi.org/10.1007/s10811-013-0037-0

Bendif E., Probert I., Hervé C., Billard C., Goux D., Lelong C., Cadoret J., Véron B. (2011). Integrative taxonomy of the Pavlovophyceae (Haptophyta): A reassessment. Protist 162:738–761. https://doi.org/10.1016/j.protis.2011.05.001

Blackburn S., Johnston C., Frampton D. (2000). Microalgae for aquaculture, biotechnology and the environment. In: McKinnon, D., Rimmer, M., Kolkovski, S. (Eds.), Hatchery Feeds: Proceedings of a Workshop Held in Cairns, Queensland, Australia, 9–13.

Burke M. (2000). Marine fingerling production at the Bribie Island Aquaculture Research Centre. Intensive green water culture: A historical perspective. In: McKinnon, D., Rimmer, M., Kolkovski, S. (Eds.), Hatchery Feeds: Proceedings of a Workshop Held in Cairns, Queensland, Australia, 19–21.

Canosa L.F., Bertucci J.I. (2023). The effect of environmental stressors on growth in fish and its endocrine control. Front. Endocrinol. 14:1109461. https://doi.org/10.3389/fendo.2023.1109461

Curbelo R., Leal S., Núñez N., González O. (2016). Sustitución del alimento artificial en el esquema alimentario de postlarvas tempranas del camarón blanco Litopenaeus vannamei. REDVET Rev. Electrón. Vet. 17(11):1–9.

De Lara Andrade R., Castro T., Castro J., Castro G., Malpica A., García V. (2005). La importancia de Spirulina en la alimentación acuícola. Contact 57:13–16.

Emerenciano M.G.C., Rombenso A.N., Vieira F.D.N., Martins M.A., Coman G.J., Truong H.H., Noble T.H., Simon C.J. (2022). Intensification of penaeid shrimp culture: An applied review of advances in production systems, nutrition and breeding. Animals (Basel). 12(3):236. https://doi.org/10.3390/ani12030236

Food and Agriculture Organization FAO. (2024). The state of world fisheries and aquaculture 2024. Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/handle/20.500.14283/cd0683en

Gadelha R., Gomes de Figueiredo. (2013). Eficiência da microalga Spirulina platensis na alimentação do camarão Litopenaeus vannamei. Tesis Doctorado, Universidade Federal da Paraíba, João Pessoa, Brasil. http://tede.biblioteca.ufpb.br/bitstream/tede/4058/1/arquivototal.pdf

Gallardo P., Pedroza-Islas R., Garcia-Galano T., Pascual T., Rosal C., Sanchez A., Gaxiola G. (2002). Replacement of live food with microbound diet in feeding Litopenaeus setiferus (Burkenroad) larvae. Aquac. Res. 33:681–691. https://doi.org/10.1046/j.1365-2109.2002.00705.x

Gamboa-Delgado J., Morales-Navarro Y., Nieto-López M., Villarreal-Cavazos D., Cruz-Suárez L. (2019). Assimilation of dietary nitrogen supplied by fish meal and microalgal biomass from Spirulina (Arthrospira platensis) and Nannochloropsis oculata in shrimp Litopenaeus vannamei fed compound diets. J. Appl. Phycol. 31:2379–2389. https://doi.org/10.1007/s10811-019-1732-2

Ghaeni M., Matinfar A., Soltani M., Rabbani M., Vosoughi A. (2011). Comparative effects of pure powdered Spirulina and other diets on larval growth and survival of green tiger shrimp, Penaeus semisulcatus. Iran. J. Fish. Sci. 10(2):208–217.

Habib M.A.B., Parvin M., Huntington T.C., Hasan M.R. (2008). A review on culture, production and use of Spirulina as food for humans and feeds for domestic animals and fish. FAO Fish. Aquac. Circ. 1034, Rome.

Hanel H., Broekman D., De Graaf S., Schnack D. (2007). Partial replacement of fishmeal by lyophilized powder of the microalgae Spirulina platensis in Pacific white shrimp diets. Open Mar. Biol. J. 1:1–5. https://doi.org/10.2174/1874450800701010001

Hemtanon P.S., Direkbusarakom V., Bunyawiwat S., Tantitakoon O. (2005). Antiviral and antibacterial substances from Spirulina platensis to combat white spot syndrome virus and Vibrio harveyi. In: Walker, P., Lester, R., Bondad-Reantaso, M.G. (Eds.), Diseases in Asian Aquaculture 5:525–534. Fish Health Section, Asian Fisheries Society, Manila.

Hernández C. (2011). Evaluación del crecimiento de camarón blanco del Pacífico (Litopenaeus vannamei) en policultivo con tilapia roja (Oreochromis mossambicus × O. niloticus) bajo un sistema de recirculación de agua. CienciaUAT 5(3):41–45.

Huang X., Huang Z., Wen W., Yan J. (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol. 25:129–137. https://doi.org/10.1007/s10811-012-9846-9

Huang C., Luo Y., Zeng G., Zhang P., Peng R., Jiang X., Jiang M. (2022). Effect of adding microalgae to whiteleg shrimp culture on water quality, shrimp development and yield. Aquac. Rep. 22:100916. https://doi.org/10.1016/j.aqrep.2021.100916

Jaime-Ceballos B., Villarreal H., García T., Pérez-Jar L., Alfonso E. (2005). Effect of Spirulina platensis meal as feed additive on growth, survival and development in Litopenaeus schmitti shrimp larvae. Rev. Invest. Mar. 26(3):235–241.

James R., Sampath K., Thangarathinam R., Vasudevan I. (2006). Effects of dietary Spirulina level on growth, fertility, coloration and leucocyte count in red swordtail, Xiphophorus helleri. Isr. J. Aquac. - Bamidgeh 58(2):97–104. https://doi.org/10.46989/001c.20433

Jiang L., Pei H., Hu W., Ji Y., Han L., Ma G. (2015). The feasibility of using complex wastewater from a monosodium glutamate factory to cultivate Spirulina subsalsa and accumulate biochemical composition. Bioresour. Technol. 180:304–310. https://doi.org/10.1016/j.biortech.2015.01.019

Ju Z., Forster P., Dominy W. (2009). Effects of supplementing two species of marine algae or their fractions to a formulated diet on growth, survival and composition of shrimp (Litopenaeus vannamei). Aquaculture 292:237–243. https://doi.org/10.1016/j.aquaculture.2009.04.040

Kang B., Sultana Z., Zhang G., Chen H.Y., Wilder M. (2018). Gene structure and expression analyses of multiple vitellogenesis-inhibiting hormones in the whiteleg shrimp Litopenaeus vannamei. Fish. Sci. 84:649–662. https://doi.org/10.1007/s12562-018-1212-7

Kilkenny, C., Browne, W., Cuthill, IC, Emerson, M. y Altman, DG (2010), Investigación con animales: Informe de experimentos in vivo : Las directrices ARRIVE. British Journal of Pharmacology, 160: 1577-1579. https://doi.org/10.1111/j.1476-5381.2010.00872.x

Khoeyi Z., Seyfabadi J., Ramezanpour Z. (2012). Effect of light intensity and photoperiod on biomass and fatty acid composition of the microalga Chlorella vulgaris. Aquac. Int. 20:41–49. https://doi.org/10.1007/s10499-011-9440-1

Kohal M., Fereidouni A., Firouzbakhsh F., Hayati I. (2018). Effects of dietary incorporation of Arthrospira (Spirulina) platensis meal on growth, survival, body composition, and reproductive performance of red cherry shrimp Neocaridina davidi (Crustacea, Atyidae) over successive spawnings. J. Appl. Phycol. 30:431–443. https://doi.org/10.1007/s10811-017-1220-5

Li L., Liu H., Zhang P. (2022). Effect of Spirulina meal supplementation on growth performance and feed utilization in fish and shrimp: A meta-analysis. Aquac. Nutr. 2022:8517733. https://doi.org/10.1155/2022/8517733

Macias-Sancho J., Poersch L.H., Bauer W., Romano L.A., Wasielesky W., Tesser M.B. (2014). Fishmeal substitution with Arthrospira (Spirulina platensis) in a practical diet for Litopenaeus vannamei: Effects on growth and immunological parameters. Aquaculture.426–427:120–125. https://doi.org/10.1016/j.aquaculture.2014.01.028

Membreño L. (2014). Crecimiento de camarones blancos Litopenaeus vannamei juveniles con dos tipos de alimentos: uno comercial con 25% de proteína vs experimental con 18% de proteína a densidad de siembra de 12 ind/m² (sistema semi-intensivo). Rev. Cient. UNAM-León 5(2):103–115.

Narciso L. (1995). The influence of the diet on the growth and survival of Penaeus kerathurus larvae. In: Lavens, P., Jasper, E., Roelants, I. (Eds.), Fish and Shellfish Larviculture Symposium. Larvi’95. Ghent University, Belgium, 420–425.

Núñez M., Lodeiros C., De Donato M., Graziani C. (2002). Evaluation of microalgae diets for Litopenaeus vannamei larvae using a simple protocol. Aquac. Int. 10:177–187. https://doi.org/10.1023/A:1022102032684

Patnaik, S., Samocha, T.M., Davis, D.A., Bullis, R.A., Browdy, C.L. (2006). The use of HUFA-rich algal meals in diets for Litopenaeus vannamei. Aquac. Nutr. 12(5):395–401.

Pistelli L., Del Mondo A., Smerilli A., Corato F., Sansone C., Brunet C. (2023). Biotechnological response curve of the cyanobacterium Spirulina subsalsa to light energy gradient. Biotechnol. Biofuels Bioprod. 16(1):28. https://doi.org/10.1186/s13068-023-02277-4

R Core Team. (2024). R: A language and environment for statistical computing (version 4.4.2). R Foundation for Statistical Computing, Vienna, Austria.

Radhakrishnan S., Saravana Bhavan P., Seenivasan C., Shanthi R., Muralisankar T. (2014). Replacement of fishmeal with Spirulina platensis, Chlorella vulgaris and Azolla pinnata on non-enzymatic and enzymatic antioxidant activities of Macrobrachium rosenbergii. J. Basic Appl. Zool. 67:25–33. https://doi.org/10.1016/j.jobaz.2013.12.003

Rodríguez-Martínez J.M. (2019). Evaluación de la cepa nativa de Spirulina subsalsa como enriquecedor en la dieta del camarón blanco Litopenaeus vannamei. Tesis de pregrado, Universidad de Oriente, Maturín, Venezuela.

Sandeep K.P., Sivaramakrishnan T., Sudhin S., Raymond J.A.J., Sudheer N.S., Raja R.A., Ambasankar K. (2023). Influence of dietary microalgal concentrates on growth, survival and health status of Penaeus vannamei. Aquac. Int. 31(5):2883–2903. https://doi.org/10.1007/s10499-023-01114-7

Senanan W., Panutrakul S., Barnette P., Chavanich S., Mantachitr V., Tangkrock-Olan N., Viyakarn V. (2009). Preliminary risk assessment of Pacific whiteleg shrimp (P. vannamei) introduced to Thailand for aquaculture. Aquac. Asia Mag. 14:28–32.

Sokal R., Rohlf F. (1995). Biometry (3rd ed.). W. Freeman, New York, USA.

Sundarraj D., Karuppaiya N., Nagarajan K., Ayyanar S., Selvakumaran J., Meril D., Moorthy K., Selvaraju A., Shanmugam G., Piliyan R., Perumal S., Pachiappan P. (2023). Evaluation of suitability of P-deficient medium-cultured microalga and copepod as an alternative live feed for Pacific whiteleg shrimp Penaeus vannamei post-larvae. Biomass Convers. Biorefin. 1–15. https://doi.org/10.1007/s13399-023-03887-6

Takeuchi T., Lu J., Yoshizaki G., Satoh S. (2002). Effect on the growth and body composition of juvenile tilapia Oreochromis niloticus fed raw Spirulina platensis. Fish. Sci. 68:34–40. https://doi.org/10.1046/j.1444-2906.2002.00386.x

Talavera V., Sánchez D., Zapata M. (1997). Tasa o factor de conversión alimenticia en el cultivo de camarón. Bol. Nicovita 2(3). Argentina.

Vigliano Relva J., Van Colen C., Barhdadi W., Daly A.J., De Troch M. (2024). Temperature increase alters relative fatty acid composition and has negative effects on reproductive output of the benthic copepod Tachidius discipes (Copepoda: Harpacticoida). Mar. Biol.171(1):22. https://doi.org/10.21203/rs.3.rs-2858869/v1

Zhang L., Liao K., Shi P., Guo J., Xie F., Xu J. (2025). Dietary inclusion of microalgae meal for Pacific white shrimp (Litopenaeus vannamei): Effects on growth performance, flesh quality, and immunity. Anim. Feed Sci. Technol. 320:116205. https://doi.org/10.1016/j.anifeedsci.2024.116205

Published

2025-11-11

Most read articles by the same author(s)