Evaluation of microalgae diets for the spat of mangrove oyster Crassostrea rhizophorae (Güilding, 1828) and its growth in outdoor conditions

Autores/as

  • María E. Glem Postgrado en Ciencias Marinas, Instituto Oceanográfico de Venezuela, Universidad de Oriente, Apartado Postal 245, Cumaná, 6101, Venezuela
  • Luis Felipe Freites Grupo de Investigación en Biología de Moluscos, Instituto Oceanográfico de Venezuela, Universidad de Oriente, Apartado Postal 245, Cumaná, 6101, Venezuela. http://orcid.org/0000-0002-6432-7366
  • Miguel Guevara Instituto Superior de Formación Docente Salomé Ureña. ISFODOSU-FEM. República Dominicana http://orcid.org/0000-0002-1830-3822
  • Adrián Márquez Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Acuicultura e Investigaciones Marinas, http://orcid.org/0000-0001-9122-6539
  • César Lodeiros Grupo de Investigación en Biología y Cultivo de Moluscos, Escuela de Acuicultura y Pesquerías, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador http://orcid.org/0000-0001-9598-2235

DOI:

https://doi.org/10.33936/at.v2i2.2680

Palabras clave:

Biochemistry composition, Bivalve, Growth, Nutritional requirement, Juveniles, Survival

Resumen

In order to guarantee an adequate level of macromolecular reserves, and allow their successful transfer to the natural environment, we have studied the survival, growth and biochemical composition (carbohydrates, lipids and proteins) of the spat (initial length 3.77 ± 0.64 mm) of the mangrove oyster Crassostrea rhizophorae, fed with seven different combinations (diets) of three tropical microalgae: Chaetoceros sp. Araya strain (Ch-A), Isochrysis galbana (Ig) and Tetraselmis chui (Tc). The microalgae biochemical composition was also determined. In the indoor bioassay, each one of the seven diets was assigned three aquariums (replicates with 21 spat). In addition, three more replicates were arranged in an outdoor environment (control). After 36 days, the biochemical and biometric parameters of the juveniles in the indoor bioassay were determined, and they were transferred to the outdoor environment. The control treatment suffered considerably high mortality rates (≈80%) during this period and it was not possible to obtain further data from it for the experiment. The transferred juveniles continued to be cultured in suspension for 30 days, after which their biochemical and biometric parameters were evaluated again. During this period, samplings of the environmental variables were taken weekly. In general, within the indoor period, the greatest biometric and biochemical values were obtained in the organisms fed with one monoalgal diet (Ch-A), bialgal diets (Ch-A+Tc; Ch-A+Ig) and the trialgal diet (Ch-A+Ig+Tc), a tendency that remained in the outdoor environment. This was attributed to the balanced contribution of biomolecules previously offered by these diets. These results suggest that the juveniles made use of the energy content found in carbohydrates and lipids once they were transferred outdoors; where these energy sources were probably catabolized to compensate for the scarce availability of food (low chlorophyll a and organic seston) observed in the outdoor culture site.

Descargas

La descarga de datos todavía no está disponible.

Citas

Acosta, V., Lodeiros, C., Prieto, A., Glem, M., Natera, Y. (2009). Efecto de la profundidad sobre el crecimiento de los mejillones Perna perna y Perna viridis (Bivalvia:Mytilidae) en cultivo suspendido en el Golfo de Cariaco, Venezuela. Zootecnia Tropical, 27(3):315-328.

Albentosa, M., Pérez-Camacho, A., Labarta, U., Fernández-Reiriz, M.J. (1997). Evaluation of freeze-dried microalgal diets for the seed culture of Ruditapes decussatus using physiological and biochemical parameters. Aquaculture, 154:305-321.

Albentosa, M., Pérez-Camacho, A., Labarta, U., Fernández-Reiriz, M. (1996a). Evaluation of live microalgal diets for the seed culture of Ruditapes decussatus using physiological and biochemical parameters. Aquaculture, 148:11-23.

Albentosa, M., Pérez-Camacho, A., Labarta, U., Beiras, R., Fernández-Reiriz, M. (1996b). Nutritional value of algal diets to clam juveniles Venerupis pullastra. Marine Ecology Progress Series, 97:261-269.

Becker, W. (2004). Microalgae for Aquaculture. The Nutritional Value of Microalgae for Aquaculture. In: Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Richmond, A. (edit.). Blackwell Publishing. 21:380-391.

Bligh, E., Dyer, W. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37:911-917.

Bricelj, V., Shumway, S. (1991). Physiology: Energy acquisition and utilization. In: Shumway S.E (ed). Scallops: biology, ecology and aquaculture. Developments in Aquaculture and Fisheries Science Vol. 21, Elsevier. Nueva York. pp. 305-346.

Brown, M., Mular, M., Miller, I., Farmer, C., Trenerry, C. (1999). The vitamin content of microalgae used in aquaculture. Journal Applied Phycology, 11:247-255.

Caraballo, L. (1970). Condiciones de sedimentación en las playas de la Bahía de Mochima. Boletín del Instituto Oceanográfico de Venezuela, Universidad de Oriente., 9:9-20.

Carranza, A., Defeo, O., Beck, M.W. 2008. Diversity, conservation status and threats for native Oysters (Ostreidae) around the Atlantic and Caribbean coasts of South America. Aquatic Conservation, 19:344-353.

Carranza, A., Defeo, O., García, A., Gamarra, A., Pascual, M., Henriques, M., Prado, L., León, L., Lodeiros, C. 2011. Towards a south American network for shellfish conservation and restoration. Tentacles, 19:3-10.

Claus, C., Maeckelberghe, H., de Pauw, N. (1983). Onshore nursery rearing of bivalve molluscs in Belgium. Aquaculture Engineering, 2:13-26.
Cotteau, P., Sorgeloos, P. (1992). The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: an international survey. Journal of Shellfish Research, 11:467-476.

Dégremont, L., Bédier, E., Soletchnik, P., Ropert, M., Huvet, A., Moal, J., Samain, J.F., Boudry, P. (2005a). Relative importance of family, site, and field placement timing on survival, growth and yield of hatchery-produced Pacific oyster juveniles (Crassostrea gigas). Aquaculture, 249:213-229.

Dégremont, L., Boudry, P., Soletchnik, P., Bédier, E., Ropert, M., Samain, J.F. (2005b). Effects of age and environment on the summer mortality in cupped oyster Crassostrea gigas during the first two years. Research Journal of Shellfish, 24:650.

De Moreno, J.E.A., Pollero, R.J., Moreno, V.J., Brenner, R.R. (1980). Lipids and fatty acids of the mussel (Mytilus platensis d'Orbigny) from South Atlantic waters. Journal of Experimental Marine Biology and Ecology, 48:263-276.

D’Souza, F., Kelly, G. (2000). Effects of a diet of a nitrogen-limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tiger prawn (Penaeus monodon) larvae. Aquaculture, 181:311-329.

Dubois, M., Pilles, K., Hamilton, J., Rebers, P., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 2:350-356.

Expósito, N., Zoppi, E. 1999. Efectos de las descargas de una laguna de estabilización sobre el ecosistema marino. Libro de Resúmenes Ampliados del VIII Congreso Latinoamericano sobre Ciencias del Mar (COLACMAR), Perú, Tomo II: 845-847.

Fernández-Reiriz, M.J., Labarta, U., Babarro, J.M.F. (1996) Comparative allometries in growth and chemical composition of mussel (Mytilus galloprovincialis, Lmk.) cultured in two zones in the Ría Sada (Galicia, NWSpain). Journal of Shellfish Research, 15:349-353.
Freites, L., Fernández-Reiriz, M. J., Labarta, U. (2003). Energy content and biochemical substrates of subtidal and rocky shore mussel seeds (Mytilus galloprovincialis), in Galician culture. Ciencias Marinas, 29(4B):603-619.

Gabott, P.A. (1975). Storage cycles in marine bivalve mollusks: a hypothesis concerning the relationship between glycogen metabolism and gametogenesis. Proceedings of the 9thEuropean Symposium of marine biology, Harold Barnes (ed.) Aberdeen Univesity Press, pp 191-211.

Gil, H., Moreno, M. (2007). Explotación y comercialización de la ostra de mangle, Crassostrea rhizophorae, en algunas playas turísticas del estado Sucre, Venezuela. Zootecnia Tropical, 25(3):215-219.

Helm, M., Bourne, N. (2006). Cultivo de bivalvos en criaderos. Un manual práctico. Documento técnico de pesca (FAO). Roma, Italia. 182 pp.

Helm, M., Laing, I. (1987). Preliminary observations on the nutritional value of ‘Tahiti Isochrysis’ to Bivalve Larvae. Aquaculture, 62:281-288.

Herbert, D., Phipps, P., Stranse, R. (1971). Chemical analysis of microbial cells. Methods in Microbiology, 5:209-244.

Hernández, O., Troccoli, L., Millán, J. (1998). Crecimiento, engorde y sobrevivencia de la Ostra de Mangle Crassostrea rhizophorae Guilding, 1828 en la Isla de Cubagüa, Venezuela. Caribbean Journal Sciences, 34 (3-4):243-249.

Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8:1-5. https ://doi.org/10.1371/journ al.pbio.1000412.

Kreeger, D., Hawkins, A., Bayne, B. (1993). Use of dual-labeled microcapsules to discern the physiological fates of assimilated carbohydrate, protein carbon, and protein nitrogen in suspension-feeding organisms. Limnology and Oceanography, 41(2):208-215.

Lodeiros, C., Freites, L. (2008). Estado actual y perspectivas del cultivo de moluscos bivalvos en Venezuela. pp: 135–150. En: Lovatelli, A.; Farías, A. & Uriarte, I. (Eds). Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina. Taller Técnico Regional de la FAO. 20–24 de agosto de 2007, Puerto Montt, Chile. FAO Actas de Pesca y Acuicultura. No. 12. Roma, FAO.

Lodeiros, C.J., Freites, L., Márquez, A., Glem, M. E., Guevara, M., Saucedo, P.E. (2016). Comparative growth and survival of juveniles of the Caribbean pearl oyster, Pinctada imbricata cultivated indoor with microalgae diets and outdoor with natural diet. Aquaculture Nutrition, 23(3):511-522.

Lovatelli, A. Sarkis, S. (2011) A regional shellfish hatchery for the Wider Caribbean: Assessing its feasibility and sustainability. FAO Regional Technical Workshop.18-21 October 2010, Kingston, Jamaica. FAO Fish Aquacult. Proc. No. 19. Rome, FAO. 2011. 246 pp.

Lowry, O., Rosebrough, H., Farr, A., Randall, R. (1951). Protein measurement whit the folin-phenol reagent. Journal of Biological Chemistry, 193:265-275.

MacDonalds, B., Thompson, R. (1985). Influence of temperature and food availability on the ecological energetics of the giant scallop Placopecten magellanicus. I. Growth rates of shell and somatic tissue. Marine Ecology Progress Series, 25:279-294.

Márquez, A., Lodeiros, C., Semidey, D., Carpio, M., Graziani, C. (2011). Crecimiento y supervivencia de la ostra perlífera Pinctada imbricata (Röding, 1798) bajo diferentes sistemas de confinamiento en cultivo suspendido. Zootecnia Tropical, 29(3): 337-351.

Marsh, J., Westein, D. (1966). Simple charring method for determination of lipids. Journal of Lipids Research., 7: 574-592.

Marshall, R., McKinley, S., Pearce, C. (2010). Effects of nutrition on larval growth and survival in bivalves. Aquaculture, 2:33-55.

Martínez-Fernández, E., Acosta-Salmón, H., Rangel-Dávalos, C. (2004). Ingestion and digestion of 10 species of microalgae by winged pearl oyster Pteria sterna (Gould, 1851) larvae. Aquaculture, 230:417-423.

Matias, D., Joaquin, S., Ramos, M., Sobral, P., Leitão, A. (201). Biochemical compounds' dynamics during larval development of the carpet-shell clam Ruditapes decussatus (Linnaeus, 1758): effects of mono-specific diets and starvation. Helgoland Marine Research, 65:369–379.

Mengual, M., Lodeiros, C., Márquez, A. (2009). Crecimiento y supervivencia de la ostra alada Pteria colymbus (Röding 1798), en estructuras tubulares en la Bahía de Mochima, estado Sucre, Venezuela. Zootecnia Tropical, 29(2):219-229.

Milke, L., Bricelj, M., Parrish, C. (2008). Biochemical characterization and nutritional value of three Pavlova spp. in unialgal and mixed diets with Chaetoceros muelleri for postlarval sea scallops, Placopecten magellanicus. Aquaculture, 276:130-142.

Napolitano, G.E., MacDonald, B.A., Thompson, R.J., Ackman, R.G. (1992). Lipid composition of eggs and adductor muscle in giant scallops (Placopecten magellanicus) from different habitats. Marine Biology, 113:71-76.

Núñez, M., Lodeiros, C., De Donato, M., Graziani, C. (2002). Evaluation of microalgae diets for Litopenaeus vannamei larvae using a simple protocol. Aquaculture International, 10 (3):177-187.

Oliva, D., Abarca, A., Gutiérrez, R.; Celis, A., Herrera, L., Pizarro, V. (2013). Effect of stocking density and diet on growth and survival of post-larvae of the taquilla clam Mulinia edulis cultivated in sand in a hatchery. Revista de Biología Marina y Oceanografía, 48:37-44.

Pacheco, O., Cabrera, J., Zamora, E. (1983). Crecimiento y madurez sexual de Crassostrea rhizophorae (Guilding, 1828) cultivada en sistema suspendido en Estero Vizcaya, Limón, Costa Rica. Revista de Biología Tropical, 31(2):277-281.

Persoone, G., Claus, C. (1980). Mass culture of algae, a bottleneck in the nursery culturing of molluscs. In: Algal Biomass. Shelef, G. & Soeder, C.J. (eds), pp. 265-285. Elsevier, Amsterdam.

Pico-Segura, C., Font, G., Lorente, F., Martínez, A., Palou, A., Vidal, D., BecerriL, C. 2013. Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición (AESAN) en relación a una solicitud de evaluación inicial para la comercialización de la microalga marina Tetraselmis chuii en el marco del Reglamento (CE) Nº 258/97 sobre nuevos alimentos y nuevos ingredientes alimentarios. Alcalá, España. 94 pp.

Rivero-Rodríguez, S., Beaumont, A., Lora-Vilchis, M. (2007). The effect of microalgal diets on growth, biochemical composition, and fatty acid profile of Crassostrea corteziensis (Hertlein) juveniles. Aquaculture, 263:199-210.
Roa, M. (1961). Estudio topográfico y sedimentológico de la bahía de Mochima. Boletín del Instituto Oceanográfico de Venezuela, Universidad de Oriente, 1(1):5-20.

Sánchez-Lazo, C., Martínez-Pita, I. (2014). Effects of different mono, bi and trispecific microalgae diets on survival, growth, development, settlement and fatty acid composition of mussel Mytilus galloprovincialis (Lamarck, 1819) larvae. Aquaculture, 426-427:138-147.

Saucedo, P., González-Jiménez, A., Acosta-Salmón, H., Mazón-Suástegui, J., Ronsón-Paulín, J. (2013). Nutritional value of microalgae-based diets for lions-paw scallop (Nodipecten subnodosus) juveniles reared at different temperature. Aquaculture, 392-395:113-119.

Sivakumar, N., Sundararaman, M., Selvakumar, G. (2001). Efficacy of micro algae and cyanobacteria as a live feed for juveniles of shrimp Penaeus monodon. African Journal of Biotecnology, 10(55):11594-11599.

Southgate, P. (2003). Feeds and fed production. In: Lucas, J.S. & Southgate, P.C. (eds). Aquaculture: Farming aquatic animals and plants, Blackwell Publishing, Oxford. pp: 172-198.

Strickland, J., Parson, T. (1972). A practical handbook of seawater analysis, Bull. Fish. Rev., 16:167-315.

Uriarte, I., Farías, A. (1999). The effect of dietary protein content on growth and biochemical composition of Chilean scallop Argopecten purpuratus (L.) postlarvae and juveniles. Aquaculture, 180:119-127.

Uriarte, I., Rupp, G., Abarca, A. (2002). Producción de juveniles de pectínidos iberoamericanos bajo condiciones controladas. En: Maeda-Martínez, A (ed.). Los moluscos pectínidos de Iberoamérica: Ciencia y acuicultura. Editorial Limusa, México. pp. 147-171.

Velasco, L.A., Barros, J. 2008. Cultivo de bivalvos en Colombia: utopía o apuesta de futuro?. En A. Lovatelli, A. Farias e I. Uriarte (eds). Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina. Taller Técnico Regional de la FAO. 20–24 de agosto de 2007, Puerto Montt, Chile. FAO Actas de Pesca y Acuicultura. No. 12. Roma, FAO. pp. 115–128.

Veniot, A.; Bricelj, V., Beninger, P. (2003). Ontogenic changes in gill morphology and significance for food acquisition in the scallop, Placopecten magellanicus. Marine Biology, 142: 123-131.

Vera, D., Aldana, D. (2000). Crecimiento y sobrevivencia de semillas del ostión Crassostrea virginica en una granja camaronícola en Yucatán, México. Revista de Biología Tropical, 48:1-17.

Yan, X., Zhang, G., Yang, F. (2006). Effects of diet, stoking density, and environmental factors on growth, survival, and metamorphosis of Manila clam Ruditapes phiippinarum larvae. Aquaculture, 253:350-358.

Zar, J. (2014). Biostatistical analysis. 5th Ed. Pearson Education Limited, Edinburgh Gate U.K.

Descargas

Publicado

2020-09-18

Artículos más leídos del mismo autor/a