Tratamiento físico-químico del agua para el cultivo larvario y el asentamiento de la ostra del Pacífico Crassostrea gigas (Thunberg, 1975)
DOI:
https://doi.org/10.33936/at.v2i1.2414Palabras clave:
Hipoclorito, Vitamina C, Larvas pedivelíger, Tratamiento del agua, Tratamiento UVResumen
La ostra del Pacífico Crassostrea gigas es uno de los moluscos con mayor producción a escala global y el éxito de su cultivo depende principalmente de la producción de semillas bajo condiciones controladas, siendo la calidad del agua utilizada un factor preponderante. Se evaluó la producción de postlarvas, tanto en el desarrollo larvario como en etapa postlarvaria temprana, bajo distintos tratamientos físicos y químicos comúnmente utilizados en el cultivo de invertebrados, teniendo como base la filtración y exposición del agua a la luz ultravioleta-UV (tratamiento 1-control) y sus variantes con adición de: hipoclorito + tiosulfato, hipoclorito + vitamina C, hipoclorito + tiosulfato + ácido etilendiamino tetraacético-EDTA, hipoclorito + tiosulfato + vitamina C + EDTA y antibiótico oxitetraciclina. Los resultados en menor tiempo del desarrollo larvario, mayor tasa de crecimiento y talla de larvas competentes demuestran la eficacia del tratamiento físico del agua filtrada e irradiada con UV en flujos de 10 L min, y de la terapia basada en oxitetraciclina para aumentar la supervivencia, así como también afectar positivamente en la tasa de asentamiento; sin embargo, no recomendamos el uso de antibióticos en la producción de semillas de C. gigas, por generar menor condición fisiológica de las larvas (retardo de 2 días en el desarrollo larvario) y sus efectos de crear resistencia dentro y fuera de la hatchery. Se recomienda para la producción de postlarvas de C. gigas el uso del agua filtrada hasta 1 µm y posterior exposición a luz UV, así como estudios para la búsqueda de alternativas de desinfección o fortalecimiento inmunológico con el uso de productos naturales y probióticos para la optimización del desarrollo larvario y postlarvario.Descargas
La descarga de datos todavía no está disponible.
Citas
Abasolo-Pacheco F., Mazón-Suástegui J.M., Saucedo P.E. (2009). Response and condition of larvae of the scallops Nodipecten subnodosus and Argopecten ventricosus reared at the hatchery with different seawater sources. Aquaculture, 296:255–262. https://doi.org/10.1016/j.aquaculture.2009.08.028
Álvarez R., Cobo L., Sonnenholzner S., Stern S. 2008. Estado actual de la acuicultura de moluscos bivalvos en Ecuador. In Lovatelli A., Farías A., Uriarte I. (eds). Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina. Taller Técnico Regional de la FAO. 20–24 de agosto de 2007, Puerto Montt, Chile. FAO Actas de Pesca y Acuicultura. No. 12. Roma, FAO. pp. 129-133.
Barros P., Sobral P., Range P., Chícharo L., Matias D. (2013). Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J. Exp. Mar. Bio. Ecol., 440: 200-206. https://doi.org/10.1016/j.jembe.2012.12.014
Boyd C.E., Massaut L. (1999). Risks associated with the use of chemicals in pond aquaculture. Aquacul. Eng. 20: 113-132. https://doi.org/10.1016/S0144-8609(99)00010-2
Boyd C.E., Tucker C.S., Somridhivej B. (2016). Alkalinity and Hardness: Critical but Elusive Concepts in Aquaculture. J. World Aquac. Soc., 47:6-41. https://doi.org/10.1111/jwas.12241
Chu W.H, Gao N.Y., Deng, Y. (2010). Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid. J. Hazard. Mater., 173:82-86. https://doi.org/10.1016/j.jhazmat.2009.08.051
De Wit, P., Durland, E., Ventura, A., Waldbusser, G. G., Langdon, C. J. (2016). Effects of pCO2 stress on gene expression and biomineralization of developing larvae of the Pacific oyster Crassostrea gigas. In American Geophysical Union, Ocean Sciences Meeting 2016, abstract# AH11A-07.
De Wit P., Durland E., Ventura A., Langdon C.J. (2018). Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms. BMC Genomics, 19 160.
Dubert J., Osorio C.R., Prado S., Barja J.L. (2016). Persistence of Antibiotic Resistant Vibrio spp. in Shellfish Hatchery Environment. Microb. Ecol., 72(4):851-860. https://doi.org/10.1007/s00248-015-0705-5.
FAO (2020). Fishery statistical collections. Global Aquaculture Production 1950–2017. FAO Fisheries and Aquaculture Department (on line), Roe. http://www.fao.org/ fishery/statistics/global-aquaculture- production/en, Accessed date: 15 Febuary 2020.
García-Bernal, M., Ossorio-Álvarezl, P. A., Medina-Marrero, R., Marrero-Chang, O., Casanova-González, M., & Mazón-Suástegui, J. M. (2020). Effect of Streptomyces sp. RL8 on the survival of Artemia franciscana nauplii and resistance to Vibrio parahaemolyticus. Fisheries Science, 86(1):137-144. https://doi.org/10.1007/s12562-019-01378-0
Gosling E. (2015) Marine Bivalve Molluscs. 2nd Edition, Wiley-Blackwell, Hoboken, 258 pp. http://dx.doi.org/10.1002/9781119045212
Gretchen K.B., Stephen J.K., Joseph R.T., Raymon A.W. (2004). Changes in water quality after addition of sea salt to fresh water: implications during toxicity testing. Chemosphere, 57:1707-1711.
Helm, M.M.; Bourne, N.; Lovatelli, A. (2004). Hatchery culture of bivalves. A practical manual.FAO Fisheries Technical Paper. No. 471. Rome, FAO. 177p.
Jawahar T., Palamiappan R., Dhevendaran K. (2002). Inactivation of luminous Vibrio spp. by free chlorine. Bangladesh J. Fis. Res., 6(1):53-58.
Jones J.B. (2006). Why won’t they grow? - Inhibitory substances and mollusc hatcheries. Aquacul. Int. 14: 395-403. https://doi.org/10.1007/s10499-005-9040-z
Jorge R.A., Moreira G.S. (2005). Use of sodium dodecyl sulfate and zinc sulfate as reference substances for toxicity tests with the mussel Perna perna (Linnaeus, 1758) (Mollusca: Bivalvia). Ecotoxicol. Environ. Saf., 61: 280-285. https://doi.org/10.1016/j.ecoenv.2004.09.005
Kasai H., Yoshimizu M., Ezura Y. (2002). Disinfection of Water for Aquaculture. Fish. Sci., 68:821-824. https://doi.org/10.2331/fishsci.68.sup1_821
Kurihara H., Kato S., Ishimatsu A. (2007). Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat. Biol., 1:91-98. https://doi.org/10.3354/ab00009
Licop M.S.R. (1988). Sodium-EDTA effects on survival and metamorphosis of Penaeus monodon larvae. Aquaculture, 74:239-247. https://doi.org/10.1016/0044-8486(88)90368-7
Lio-Po G. D., Fernandez R. D., Cruz,E. R., Baticados M. C. L., Llobrera, A.T. (1989). Recommended practices for disease prevention in prawn and shrimp hatcheries. Tigbauan, Iloilo, Philippines. Aquac. Dep. Southeast Asian Fish. Dev. Center. Aquaculture extensión pamphlet 3, 15 pp.
Lodeiros C., Marquez A., Revilla J., Rodríguez-Pesantes D., Sonnenholzner S. (2017). Spat production of the rock oyster Striostrea prismatica (Gray, 1825). J. Shellfish. Res., 36 (3):729-735.
Lodeiros C., Rodríguez-Pesantes D., Márquez A., Revilla J., Chávez-Villalba J., Sonnenholzner S. (2018).
Suspended cultivation of the Pacific oyster Crassostrea gigas in the Eastern Tropical Pacific. Aquacul. Int., 26:337-347. https://doi.org/10.1007/s10499-017-0217-z
Lombeida P. (1997) Manual para el Cultivo de Ostras en Granjas Camaroneras. Proyecto JICA-CENAIM 25.
Loor A., Ortega D., Lodeiros C., Sonnenholzner S. (2016) Early life cycle and effects of microalgal diets on larval development of the spiny rock-scallop, Spondylus limbatus (Sowerby II, 1847). Aquaculture, 450:328-334
Martin M., Osborn K.E., Billig P., Glickstein N. (1981). Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Mar. Pollut. Bull., 12:305–308. https://doi.org/10.1016/0025-326X(81)90081-3
Mendoza-Rodríguez R. (2009). Toxicidad Aguda Del Sulfato de Cobre en Postlarvas de Camarón Cryphiops Caementarius. Arch. Zootec., 58:103–110. https://doi.org/10.4321/s0004-05922009000100011
Miranda C.D., Rojas R., Abarca A., Hurtado L. (2013). Effect of florfenicol and oxytetracycline treatments on the intensive larval culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquac. Res., 45:16-30. https://doi.org/10.1111/j.1365-2109.2012.03200.x
Pascho, R.J., Landolt, M.L., Ongerth, J.E. (1995). Inactivation of Renibacterium salmoninarum by free chlorine. Aquaculture, 131:165-175. https://doi.org/10.1016/0044-8486(94)00361-Q
Pernet F., Bricelj V.M., Cartier S. (2006). Lipid class dynamics during larval ontogeny of sea scallops, Placopecten magellanicus, in relation to metamorphic success and response to antibiotics. J. Exp. Mar. Bio. Ecol., 329:265-280. https://doi.org/10.1016/j.jembe.2005.09.008
Peterka G. (1998). Vitamin C-A Promising Dechlorination Reagent. Opflow, 24:1-5. https://doi.org/10.1002/j.1551-8701.1998.tb02153.x
Revilla J, Márquez A., Lodeiros C., Sonnenholzner S. (2019a). Experimental cultures of giant lion’s paw Nodipecten subnodosus in equatorial waters of the eastern Pacific: progress in larval development and suspended culture. Latin American Journal of Aquatic Research, 47(5):818-825
Revilla J., Márquez A., Rodríguez-Pesantes D., Domínguez-Borbora C., Rodríguez J., Lodeiros C., Sonnenholzner S. (2019b). Oregano oil as a therapeutic treatment in the production of mixotrophic larvae of the lion's paw scallop Nodipecten subnodosus. Aquaculture, 498:422-427.
Scelzo M.A. (1997). Toxicidad del cobre en larvas nauplii del camarón comercial Artemesia longinaris Bate (Crustacea, Decapoda, Penaeidae). Investig. Mar., 25: 177-185. https://doi.org/10.4067/s0717-71781997002500013
Seguineau C., Laschi-Loquerie A., Moal J., Samain J.F. (1996). Vitamin requirements in great scallop larvae. Aquacul. Int., 4: 315-324. https://doi.org/10.1007/BF00120948
Sowerby A.V., Campa-Córdova A.A.I. (2005). Prophylactic Use of Antibiotics in Larval Culture of Argopecten ventricosus (Sowerby, 1835). J. Shellfish Res., 24:923-930. https://doi.org/10.2983/0730-8000(2005)24[923:puoail]2.0.co;2
Sussarellu R., Lebreton M., Rouxel J., Akcha F., Rivière G. (2018). Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos. Aquat. Toxicol., 196:70-78. https://doi.org/10.1016/j.aquatox.2018.01.001
Tanyaros, S., 2011. Na2-EDTA effects on the development of oyster, Crassostrea belcheri (Sowerby) Larvae. Kasetsart J. - Nat. Sci., 45:1058-1063.
Torrentera L, Tacon A. (1989). La producción de alimento vivo y su importancia en acuacultura. Una diagnosis. FAO-Italia. http://www.fao.org/docrep/field/003/AB473S/AB473S00.htm.
Tree J.A., Adams M.R., Lees D.N. (1997). Virus inactivation during disinfection of wastewater by chlorination and UV irradiation and the efficacy of F+ bacteriophage as a “viral indicator.” Water Sci. Technol., 35:227-232. https://doi.org/10.1016/S0273-1223(97)00263-1
Treviño, L., Lodeiros, C., Vélez‐Falcones, J., Chávez‐Alcivar, C., Isea‐León, F., Bermúdez‐Medranda, A. E., Vélez-Chica J.C., Cruz-Quintana Y., Leal D., Santana-Piñeros A.M. Rodríguez‐Pesantes, D. (2020) Suspended culture evaluation of Pacific oyster Crassostrea gigas in a tropical estuary. Aquaculture Research. https://doi.org/10.1111/are.14556
Uriarte I., Farías A., Castilla J.C. (2001). Effect of antibiotic treatment during larval development of the Chilean scallop Argopecten purpuratus. Aquac. Eng., 25:139-147. https://doi.org/10.1016/S0144-8609(01)00078-4
Velasco-Santamaría Y.M., Gómez-Manrique W., Calderón-Bernal J.M. (2006). Toxicidad aguda del sulfato de cobre (CuSO4) en alevinos de cachama blanca (Piaractus brachypomus) bajo condiciones de aguas blandas Acute copper sulphate (CuSO4) toxicity in cachama blanca (Piaractus brachypomus) fingerlings under soft water co. Rev. Orinoquía, 10:64–70.
Wu S.M., Jong K.J., Kuo S.Y. (2003). Effects of copper sulfate on ion balance and growth in tilapia larvae (Oreochromis mossambicus). Arch. Environ. Contam. Toxicol., 45:357-363. https://doi.org/10.1007/s00244-003-0122-5
Zar J. (2010). Biostatistical Analysis, 5th edition. Prentice- Hall, New Jersey, pp. 944.
Álvarez R., Cobo L., Sonnenholzner S., Stern S. 2008. Estado actual de la acuicultura de moluscos bivalvos en Ecuador. In Lovatelli A., Farías A., Uriarte I. (eds). Estado actual del cultivo y manejo de moluscos bivalvos y su proyección futura: factores que afectan su sustentabilidad en América Latina. Taller Técnico Regional de la FAO. 20–24 de agosto de 2007, Puerto Montt, Chile. FAO Actas de Pesca y Acuicultura. No. 12. Roma, FAO. pp. 129-133.
Barros P., Sobral P., Range P., Chícharo L., Matias D. (2013). Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J. Exp. Mar. Bio. Ecol., 440: 200-206. https://doi.org/10.1016/j.jembe.2012.12.014
Boyd C.E., Massaut L. (1999). Risks associated with the use of chemicals in pond aquaculture. Aquacul. Eng. 20: 113-132. https://doi.org/10.1016/S0144-8609(99)00010-2
Boyd C.E., Tucker C.S., Somridhivej B. (2016). Alkalinity and Hardness: Critical but Elusive Concepts in Aquaculture. J. World Aquac. Soc., 47:6-41. https://doi.org/10.1111/jwas.12241
Chu W.H, Gao N.Y., Deng, Y. (2010). Formation of haloacetamides during chlorination of dissolved organic nitrogen aspartic acid. J. Hazard. Mater., 173:82-86. https://doi.org/10.1016/j.jhazmat.2009.08.051
De Wit, P., Durland, E., Ventura, A., Waldbusser, G. G., Langdon, C. J. (2016). Effects of pCO2 stress on gene expression and biomineralization of developing larvae of the Pacific oyster Crassostrea gigas. In American Geophysical Union, Ocean Sciences Meeting 2016, abstract# AH11A-07.
De Wit P., Durland E., Ventura A., Langdon C.J. (2018). Gene expression correlated with delay in shell formation in larval Pacific oysters (Crassostrea gigas) exposed to experimental ocean acidification provides insights into shell formation mechanisms. BMC Genomics, 19 160.
Dubert J., Osorio C.R., Prado S., Barja J.L. (2016). Persistence of Antibiotic Resistant Vibrio spp. in Shellfish Hatchery Environment. Microb. Ecol., 72(4):851-860. https://doi.org/10.1007/s00248-015-0705-5.
FAO (2020). Fishery statistical collections. Global Aquaculture Production 1950–2017. FAO Fisheries and Aquaculture Department (on line), Roe. http://www.fao.org/ fishery/statistics/global-aquaculture- production/en, Accessed date: 15 Febuary 2020.
García-Bernal, M., Ossorio-Álvarezl, P. A., Medina-Marrero, R., Marrero-Chang, O., Casanova-González, M., & Mazón-Suástegui, J. M. (2020). Effect of Streptomyces sp. RL8 on the survival of Artemia franciscana nauplii and resistance to Vibrio parahaemolyticus. Fisheries Science, 86(1):137-144. https://doi.org/10.1007/s12562-019-01378-0
Gosling E. (2015) Marine Bivalve Molluscs. 2nd Edition, Wiley-Blackwell, Hoboken, 258 pp. http://dx.doi.org/10.1002/9781119045212
Gretchen K.B., Stephen J.K., Joseph R.T., Raymon A.W. (2004). Changes in water quality after addition of sea salt to fresh water: implications during toxicity testing. Chemosphere, 57:1707-1711.
Helm, M.M.; Bourne, N.; Lovatelli, A. (2004). Hatchery culture of bivalves. A practical manual.FAO Fisheries Technical Paper. No. 471. Rome, FAO. 177p.
Jawahar T., Palamiappan R., Dhevendaran K. (2002). Inactivation of luminous Vibrio spp. by free chlorine. Bangladesh J. Fis. Res., 6(1):53-58.
Jones J.B. (2006). Why won’t they grow? - Inhibitory substances and mollusc hatcheries. Aquacul. Int. 14: 395-403. https://doi.org/10.1007/s10499-005-9040-z
Jorge R.A., Moreira G.S. (2005). Use of sodium dodecyl sulfate and zinc sulfate as reference substances for toxicity tests with the mussel Perna perna (Linnaeus, 1758) (Mollusca: Bivalvia). Ecotoxicol. Environ. Saf., 61: 280-285. https://doi.org/10.1016/j.ecoenv.2004.09.005
Kasai H., Yoshimizu M., Ezura Y. (2002). Disinfection of Water for Aquaculture. Fish. Sci., 68:821-824. https://doi.org/10.2331/fishsci.68.sup1_821
Kurihara H., Kato S., Ishimatsu A. (2007). Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat. Biol., 1:91-98. https://doi.org/10.3354/ab00009
Licop M.S.R. (1988). Sodium-EDTA effects on survival and metamorphosis of Penaeus monodon larvae. Aquaculture, 74:239-247. https://doi.org/10.1016/0044-8486(88)90368-7
Lio-Po G. D., Fernandez R. D., Cruz,E. R., Baticados M. C. L., Llobrera, A.T. (1989). Recommended practices for disease prevention in prawn and shrimp hatcheries. Tigbauan, Iloilo, Philippines. Aquac. Dep. Southeast Asian Fish. Dev. Center. Aquaculture extensión pamphlet 3, 15 pp.
Lodeiros C., Marquez A., Revilla J., Rodríguez-Pesantes D., Sonnenholzner S. (2017). Spat production of the rock oyster Striostrea prismatica (Gray, 1825). J. Shellfish. Res., 36 (3):729-735.
Lodeiros C., Rodríguez-Pesantes D., Márquez A., Revilla J., Chávez-Villalba J., Sonnenholzner S. (2018).
Suspended cultivation of the Pacific oyster Crassostrea gigas in the Eastern Tropical Pacific. Aquacul. Int., 26:337-347. https://doi.org/10.1007/s10499-017-0217-z
Lombeida P. (1997) Manual para el Cultivo de Ostras en Granjas Camaroneras. Proyecto JICA-CENAIM 25.
Loor A., Ortega D., Lodeiros C., Sonnenholzner S. (2016) Early life cycle and effects of microalgal diets on larval development of the spiny rock-scallop, Spondylus limbatus (Sowerby II, 1847). Aquaculture, 450:328-334
Martin M., Osborn K.E., Billig P., Glickstein N. (1981). Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Mar. Pollut. Bull., 12:305–308. https://doi.org/10.1016/0025-326X(81)90081-3
Mendoza-Rodríguez R. (2009). Toxicidad Aguda Del Sulfato de Cobre en Postlarvas de Camarón Cryphiops Caementarius. Arch. Zootec., 58:103–110. https://doi.org/10.4321/s0004-05922009000100011
Miranda C.D., Rojas R., Abarca A., Hurtado L. (2013). Effect of florfenicol and oxytetracycline treatments on the intensive larval culture of the Chilean scallop Argopecten purpuratus (Lamarck, 1819). Aquac. Res., 45:16-30. https://doi.org/10.1111/j.1365-2109.2012.03200.x
Pascho, R.J., Landolt, M.L., Ongerth, J.E. (1995). Inactivation of Renibacterium salmoninarum by free chlorine. Aquaculture, 131:165-175. https://doi.org/10.1016/0044-8486(94)00361-Q
Pernet F., Bricelj V.M., Cartier S. (2006). Lipid class dynamics during larval ontogeny of sea scallops, Placopecten magellanicus, in relation to metamorphic success and response to antibiotics. J. Exp. Mar. Bio. Ecol., 329:265-280. https://doi.org/10.1016/j.jembe.2005.09.008
Peterka G. (1998). Vitamin C-A Promising Dechlorination Reagent. Opflow, 24:1-5. https://doi.org/10.1002/j.1551-8701.1998.tb02153.x
Revilla J, Márquez A., Lodeiros C., Sonnenholzner S. (2019a). Experimental cultures of giant lion’s paw Nodipecten subnodosus in equatorial waters of the eastern Pacific: progress in larval development and suspended culture. Latin American Journal of Aquatic Research, 47(5):818-825
Revilla J., Márquez A., Rodríguez-Pesantes D., Domínguez-Borbora C., Rodríguez J., Lodeiros C., Sonnenholzner S. (2019b). Oregano oil as a therapeutic treatment in the production of mixotrophic larvae of the lion's paw scallop Nodipecten subnodosus. Aquaculture, 498:422-427.
Scelzo M.A. (1997). Toxicidad del cobre en larvas nauplii del camarón comercial Artemesia longinaris Bate (Crustacea, Decapoda, Penaeidae). Investig. Mar., 25: 177-185. https://doi.org/10.4067/s0717-71781997002500013
Seguineau C., Laschi-Loquerie A., Moal J., Samain J.F. (1996). Vitamin requirements in great scallop larvae. Aquacul. Int., 4: 315-324. https://doi.org/10.1007/BF00120948
Sowerby A.V., Campa-Córdova A.A.I. (2005). Prophylactic Use of Antibiotics in Larval Culture of Argopecten ventricosus (Sowerby, 1835). J. Shellfish Res., 24:923-930. https://doi.org/10.2983/0730-8000(2005)24[923:puoail]2.0.co;2
Sussarellu R., Lebreton M., Rouxel J., Akcha F., Rivière G. (2018). Copper induces expression and methylation changes of early development genes in Crassostrea gigas embryos. Aquat. Toxicol., 196:70-78. https://doi.org/10.1016/j.aquatox.2018.01.001
Tanyaros, S., 2011. Na2-EDTA effects on the development of oyster, Crassostrea belcheri (Sowerby) Larvae. Kasetsart J. - Nat. Sci., 45:1058-1063.
Torrentera L, Tacon A. (1989). La producción de alimento vivo y su importancia en acuacultura. Una diagnosis. FAO-Italia. http://www.fao.org/docrep/field/003/AB473S/AB473S00.htm.
Tree J.A., Adams M.R., Lees D.N. (1997). Virus inactivation during disinfection of wastewater by chlorination and UV irradiation and the efficacy of F+ bacteriophage as a “viral indicator.” Water Sci. Technol., 35:227-232. https://doi.org/10.1016/S0273-1223(97)00263-1
Treviño, L., Lodeiros, C., Vélez‐Falcones, J., Chávez‐Alcivar, C., Isea‐León, F., Bermúdez‐Medranda, A. E., Vélez-Chica J.C., Cruz-Quintana Y., Leal D., Santana-Piñeros A.M. Rodríguez‐Pesantes, D. (2020) Suspended culture evaluation of Pacific oyster Crassostrea gigas in a tropical estuary. Aquaculture Research. https://doi.org/10.1111/are.14556
Uriarte I., Farías A., Castilla J.C. (2001). Effect of antibiotic treatment during larval development of the Chilean scallop Argopecten purpuratus. Aquac. Eng., 25:139-147. https://doi.org/10.1016/S0144-8609(01)00078-4
Velasco-Santamaría Y.M., Gómez-Manrique W., Calderón-Bernal J.M. (2006). Toxicidad aguda del sulfato de cobre (CuSO4) en alevinos de cachama blanca (Piaractus brachypomus) bajo condiciones de aguas blandas Acute copper sulphate (CuSO4) toxicity in cachama blanca (Piaractus brachypomus) fingerlings under soft water co. Rev. Orinoquía, 10:64–70.
Wu S.M., Jong K.J., Kuo S.Y. (2003). Effects of copper sulfate on ion balance and growth in tilapia larvae (Oreochromis mossambicus). Arch. Environ. Contam. Toxicol., 45:357-363. https://doi.org/10.1007/s00244-003-0122-5
Zar J. (2010). Biostatistical Analysis, 5th edition. Prentice- Hall, New Jersey, pp. 944.
Publicado
2020-05-13
Número
Sección
Artículo Original


