Enrichment on polyunsaturated fatty acids by Rhodomonas salina (Cryptophyta) following ethyl methane sulphonate induced random mutagenesis
DOI:
https://doi.org/10.33936/at.v2i2.2679Palabras clave:
Microalgas, Mutagénesis aleatoria, Ácidos grasos, Mejoramiento genéticoResumen
Se desarrolló un protocolo de mutagénesis con etil metanosulfonato para Rhodomonas salina. Los mutantes enriquecidos en contenido de lípidos y ácidos grasos poliinsaturados (PUFAs) se seleccionaron por su resistencia al herbicida Quizalofop. Se obtuvieron dos mutantes con una capacidad significativamente mayor de lípidos (50-60% más altos que WT) y acumulaciones de PUFA (50% más altos que WT) que demuestran la viabilidad de mejorar genéticamente una especie que no forma colonias discretas en medio sólido.
Descargas
La descarga de datos todavía no está disponible.
Citas
Bligh E., Dyer W. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37:911-917.
Chaturvedi R., Rao S., Amin M., Fujita Y. (2004). Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentaenoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. Journal of Applied Phycology, 6:135–144.
Chen Y., Li D., Lu W., Xing J., Hui B., Han Y. (2003). Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnology Letters, 25:527–529.
Cortez R., Guevara M., Bauza R., Freites L., Brito D., Rosale, N., Lodeiros C. (2015). Incremento del contenido de lípidos y de ácidos grasos poliinsaturados de una cepa de Tetraselmis tetrathele a través de mutación-selección. Interciencia, 40(3):204-209.
Dourou M., Dritsas P., Baeshen M., Elazzazy A., AL-Farga A., Aggelis G. (2020). High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media, FEMS Microbiology Letters, 081, https://doi.org/10.1093/femsle/fnaa081
Dunstan G., Brown M., Volkman J. (2005). Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry, 66:2557–2570.
Fraunholz M., Wastl J., Zauner S., Rensing S., Scherzinger M., Maier U. (1997). The evolution of cryptophytes. Plant Systematics and Evolution, 11(Suppl.):163–174.
González F., Sáez K., Vega M., Bizama B., Becerra J., Lépez I., Hernández V., Silva, M. (2019). Effect of nitrate and irradiance on fatty acid production in microalgae cultivated for feeding larvae and broodstock conditioning in batch culture. Revista de biología marina y oceanografía, 54(1):91-106.
Guevara M., Arredondo-Vega B., Palacios Y., Saéz K., Gómez P. (2016) Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. Journal of Phycology, 28 (5):2651–2660.
Guillard R. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith W. and Chanley M. (Eds.). Culture of Marine Invertebrate Animals. Plenum Press, New York. pp 26-60.
Harwood J., Caterson B. (2006). Dietary omega-3 polyunsaturated fatty acids and inflammation. Lipid Technology, 18:7–10.
Hemaiswarya S., Raja R., Ravi Kumar R., Ganesan V., Anbazhagan C. (2010). Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology. doi:10.1007/s11274-010-0632-z
Khozin I., Bigogno C., Shreshta P., Cohen Z. (2002). Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). Journal of Phycology, 38:991–994.
Marsh J., Weinstein D. (1966). Simple charring method for determination of lipids. Journal of Lipid Research, 7:574–592.
Meireles L., Guedes A., Malcasa F. (2002). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnology and Bioengineering, 81:50–55.
Queener S., Lively D. (1986). Screening and selection for strain improvement. In: Demain A., Solomon N. (Eds.) Manual of Industrial Microbiology and Biotechnology American Society for Microbiology, Washington, DC. pp 155–169.
Sato N., Murata N. (1988). Membrane Lipids. Methods in enzymology, 167:251–259.
Simonetto, M., Infante, M., Sacco, R. L., Rundek, T., Della-Morte, D. (2019). A novel anti-inflammatory role of Omega-3 PUFAs in prevention and treatment of atherosclerosis and vascular cognitive impairment and dementia. Nutrients, 11(10):2279. https://doi.org/10.3390/nu11102279
Solovchenko A., Khozin I., Didi-Cohen S., Cohen Z., Merzlyak M. (2008). Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. Journal of Applied Phycology, 20:245–251.
Su C., Chien L., Gomes J., Lin Y., Yu Y., Liou J., Syu R. (2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, 23:903–908.
Tanadul O., Noochanong W., Jirakranwong P., Chanprame S. (2018). EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp. Bioprocess and Biosystems Engineering, 41:613–619.
Thoisen C., Pedersen J. S., Jørgensen L., Kyhn A., Hansen B. W., Nielsen S. (2020). The effect of cell density on biomass and fatty acid productivity during cultivation of Rhodomonas salina in a tubular photobioreactor. https://doi.org/10.5281/zenodo.3470791
Tocher D., Bendiksen E., Campbell P., Bell J. (2008). The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture, 280:21–34.
Tremblay R., Cartier S., Miner P., Pernet F., Quere C., Moal J., Muzellec M., Mazuret M., Samain J. (2007). Effect of Rhodomonas salina addition to standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture, 262:410–418.
Van Der Meer J., Zhang X. (1988). Similar unstable mutations in three species of Gracilaria (Rhodophyta). Journal of Phycology, 24:198–202.
Wang X, Fosse HK, Li K, Chauton MS, Vadstein O, Reitan KI. (2019). Influence of Nitrogen Limitation on Lipid Accumulation and EPA and DHA Content in Four Marine Microalgae for Possible Use in Aquafeed. Frontier in Marine Scice, 6:95.
Williams E., Lambert J., O’Brien P., Houghton J. (1979). Evidence for dark repair of far ultraviolet light damage in the blue-green alga Gleocapsa alpicola. Photochemistry and Photobiology, 29:543–547.
Zar J. (1996). Biostatistical analysis, third Ed. New York: Prentice Hall, Princeton.
Chaturvedi R., Rao S., Amin M., Fujita Y. (2004). Isolation of quizalofop-resistant mutants of Nannochloropsis oculata (Eustigmatophyceae) with high eicosapentaenoic acid following N-methyl-N-nitrosourea-induced random mutagenesis. Journal of Applied Phycology, 6:135–144.
Chen Y., Li D., Lu W., Xing J., Hui B., Han Y. (2003). Screening and characterization of astaxanthin-hyperproducing mutants of Haematococcus pluvialis. Biotechnology Letters, 25:527–529.
Cortez R., Guevara M., Bauza R., Freites L., Brito D., Rosale, N., Lodeiros C. (2015). Incremento del contenido de lípidos y de ácidos grasos poliinsaturados de una cepa de Tetraselmis tetrathele a través de mutación-selección. Interciencia, 40(3):204-209.
Dourou M., Dritsas P., Baeshen M., Elazzazy A., AL-Farga A., Aggelis G. (2020). High-added value products from microalgae and prospects of aquaculture wastewaters as microalgae growth media, FEMS Microbiology Letters, 081, https://doi.org/10.1093/femsle/fnaa081
Dunstan G., Brown M., Volkman J. (2005). Cryptophyceae and rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry, 66:2557–2570.
Fraunholz M., Wastl J., Zauner S., Rensing S., Scherzinger M., Maier U. (1997). The evolution of cryptophytes. Plant Systematics and Evolution, 11(Suppl.):163–174.
González F., Sáez K., Vega M., Bizama B., Becerra J., Lépez I., Hernández V., Silva, M. (2019). Effect of nitrate and irradiance on fatty acid production in microalgae cultivated for feeding larvae and broodstock conditioning in batch culture. Revista de biología marina y oceanografía, 54(1):91-106.
Guevara M., Arredondo-Vega B., Palacios Y., Saéz K., Gómez P. (2016) Comparison of growth and biochemical parameters of two strains of Rhodomonas salina (Cryptophyceae) cultivated under different combinations of irradiance, temperature, and nutrients. Journal of Phycology, 28 (5):2651–2660.
Guillard R. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith W. and Chanley M. (Eds.). Culture of Marine Invertebrate Animals. Plenum Press, New York. pp 26-60.
Harwood J., Caterson B. (2006). Dietary omega-3 polyunsaturated fatty acids and inflammation. Lipid Technology, 18:7–10.
Hemaiswarya S., Raja R., Ravi Kumar R., Ganesan V., Anbazhagan C. (2010). Microalgae: a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology. doi:10.1007/s11274-010-0632-z
Khozin I., Bigogno C., Shreshta P., Cohen Z. (2002). Nitrogen starvation induces the accumulation of arachidonic acid in the freshwater green alga Parietochloris incisa (Trebouxiophyceae). Journal of Phycology, 38:991–994.
Marsh J., Weinstein D. (1966). Simple charring method for determination of lipids. Journal of Lipid Research, 7:574–592.
Meireles L., Guedes A., Malcasa F. (2002). Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnology and Bioengineering, 81:50–55.
Queener S., Lively D. (1986). Screening and selection for strain improvement. In: Demain A., Solomon N. (Eds.) Manual of Industrial Microbiology and Biotechnology American Society for Microbiology, Washington, DC. pp 155–169.
Sato N., Murata N. (1988). Membrane Lipids. Methods in enzymology, 167:251–259.
Simonetto, M., Infante, M., Sacco, R. L., Rundek, T., Della-Morte, D. (2019). A novel anti-inflammatory role of Omega-3 PUFAs in prevention and treatment of atherosclerosis and vascular cognitive impairment and dementia. Nutrients, 11(10):2279. https://doi.org/10.3390/nu11102279
Solovchenko A., Khozin I., Didi-Cohen S., Cohen Z., Merzlyak M. (2008). Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incise. Journal of Applied Phycology, 20:245–251.
Su C., Chien L., Gomes J., Lin Y., Yu Y., Liou J., Syu R. (2011). Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process. Journal of Applied Phycology, 23:903–908.
Tanadul O., Noochanong W., Jirakranwong P., Chanprame S. (2018). EMS-induced mutation followed by quizalofop-screening increased lipid productivity in Chlorella sp. Bioprocess and Biosystems Engineering, 41:613–619.
Thoisen C., Pedersen J. S., Jørgensen L., Kyhn A., Hansen B. W., Nielsen S. (2020). The effect of cell density on biomass and fatty acid productivity during cultivation of Rhodomonas salina in a tubular photobioreactor. https://doi.org/10.5281/zenodo.3470791
Tocher D., Bendiksen E., Campbell P., Bell J. (2008). The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture, 280:21–34.
Tremblay R., Cartier S., Miner P., Pernet F., Quere C., Moal J., Muzellec M., Mazuret M., Samain J. (2007). Effect of Rhodomonas salina addition to standard hatchery diet during the early ontogeny of the scallop Pecten maximus. Aquaculture, 262:410–418.
Van Der Meer J., Zhang X. (1988). Similar unstable mutations in three species of Gracilaria (Rhodophyta). Journal of Phycology, 24:198–202.
Wang X, Fosse HK, Li K, Chauton MS, Vadstein O, Reitan KI. (2019). Influence of Nitrogen Limitation on Lipid Accumulation and EPA and DHA Content in Four Marine Microalgae for Possible Use in Aquafeed. Frontier in Marine Scice, 6:95.
Williams E., Lambert J., O’Brien P., Houghton J. (1979). Evidence for dark repair of far ultraviolet light damage in the blue-green alga Gleocapsa alpicola. Photochemistry and Photobiology, 29:543–547.
Zar J. (1996). Biostatistical analysis, third Ed. New York: Prentice Hall, Princeton.
Publicado
2020-09-18
Número
Sección
Artículo Original