Use of energy reserves during early sexual maturity at the hatchery of the winged pearl oyster Pteria sterna with diets enriched with carbohydrates and lipids
Español
DOI:
https://doi.org/10.33936/at.v5i1.5481Keywords:
Aquaculture, biochemical composition, microalgal diet, first sexual maturity, lipid microcapsulesAbstract
The use of energy reserves of juvenile Pteria sterna broodstock (50 mm shell height; 9 months old) was evaluated during their first sexual maturity under laboratory conditions. A base microalgal diet (diet M) was supplemented with carbohydrate-rich corn starch (diets F1 and F2) and lipid-rich microcapsules (diets L1 and L2), given at a daily ration of 1 and 2% of dry weight of soft tissues. Samplings were conducted at days 0 (d0), 15 (d15) and 30 (d30) to collect tissues and determine temporal variations in the gonad tissue index (ITG, %), theoretical diameter of oocytes (DT, µm), and biochemical content of carbohydrates, proteins, and lipids in the gonad, digestive gland, adductor muscle, and mantle tissue (mg/g). Given the size of oysters and protandrous nature of the species, males outnumbered females in all samplings. At d30, all oysters matured in different proportions depending on sex and diet, being the ITG significantly higher in males and females given the L1 diet, and the DT of oocytes significantly higher in females fed the L2 diet. The carbohydrate concentration in adductor muscle and gonad significantly decreased in both samplings (d15 y d30) and in almost all diets (except F2); this suggests a process of lipogenesis from this fuel in both tissues, particularly in muscle, which explains in turn the increase in total lipids in the gonad at d30 in oysters from the L1 and L2 diets. The lipid content of the digestive gland significantly decreased at d30 with almost all diets (except L2), indicating that this tissue mobilizes previously stored lipids to the gonad to ensure gamete maturation. The L2 diet appears the best alternative, even combined with the F2 diet, to promote sexual maturation of P. sterna, with results that could be associated with its initial protandrous-type gametogenic activity.
Downloads
References
Albentosa M., Fernández-Reiriz M.J., Pérez-Camacho A., Labarta U. 2002. Wheatgerm flour in diets for manila clam Ruditapes philippinarum, spat. Aquaculture 212: 335–345. https://doi.org/10.1016/S0044-8486(02)00121-7.
Bligh E.G., Dyer W.J. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.
Caers M., Coutteau P., Sorgeloos P. 2000. Incorporation of different fatty acids, supplied as emulsions or liposomes, in the polar and neutral lipids of Crassostrea gigas spat. Aquaculture 186: 157–171. https://doi.org/10.1016/S0044-8486(99)00364-6.
Caers M., Coutteau P., Sorgeloos P., Gajardo G. 2003. Impact of algal diets and emulsions on the fatty acid composition and content of selected tissues of adult broodstock of the Chilean scallop Argopecten pupuratus (Lamarck, 1819). Aquaculture 217: 437–452. https://doi.org/10.1016/S0044-8486(02)00144-8.
Cáceres-Puig J.I., Cáceres-Martínez C., Saucedo P.E. 2009. Annual reproductive effort of Pacific winged pearl oyster Pteria sterna and its relation with the timing for planning pearl seeding operations. J. Shellfish Res. 29: 288–295. https://doi.org/10.2983/035.028.0308.
Coan E.V., Valentich-Scott, P. 2012. Bivalve seashells of tropical west America. Marine bivalve mollusks from Baja California to Northern Peru. Santa Barbara Museum of Natural History, Santa Barbara, CA, pp. 1257. ISBN: 978-0-936494-43-2.
Ehteshami F., Christianus A., Rameshi H., Azni-Harmin S., Roos-Saad C. 2011. The effects of dietary supplements of polyunsaturated fatty acid on pearl oyster, Pinctada margaritifera L., gonad composition and reproductive output. Aquac. Res. 42: 613–622. https://doi.org/10.1111/j.1365-2109.2010.02658.x.
Fernández-Reiriz M.J., Labarta U., Albentosa M., Pérez-Camacho A. 1998. Effect of microalgal diets and commercial wheatgerm flours on the lipid profile of Ruditapes decussatus spat. Comp. Biochem. Physiol. 119A: 369–377. 10.1016/s1095-6433(97)00429-7.
Fernández-Reiriz M.J., Labarta U., Albentosa M., Pérez-Camacho A. 1999. Lipid profile and growth of the clam spat, Ruditapes decussatus (L), fed with microalgal diets and cornstarch. Comp. Biochem. Physiol. 124B: 309–318. 10.1016/S0305-0491(99)00129-7.
Freites L., Jara F., Gregori M., Márquez A., Saucedo P.E., Lodeiros C. 2020. Performance of the winged pearl oyster Pteria sterna (Gould, 1851), implanted for half-pearl (mabé) production in two size groups. Aquaculture 524: 735267. http://doi.org/10.4194/AQUAST926.
Gómez-Robles E., Mazón-Suástegui J.M., Acosta-Salmón H., Hawkins M., Saucedo P.E. 2013. Internal nutrient management associated to gonad quality and successful reproduction of the winged pearl oyster Pteria sterna. Aquaculture 412–413: 45–51. 10.1016/J.AQUACULTURE.2013.07.010.
Gómez-Robles M.E., Acosta-Salmón H., Mazón-Suástegui J.M., Saucedo P.E. 2023. Variaciones estacionales en el desempeño reproductivo y larvario de la concha nácar Pteria sterna asociadas a condiciones ambientales anómalas. Cienc. Mar. (en prensa).
González-Araya G., Lebrun L., Quéré C., Robert R. 2012. The selection of an ideal diet for Ostrea edulis (L.) broodstock conditioning (part B). Aquaculture 362–363: 55–66. https://doi.org/10.1016/j.aquaculture.2012.06.029.
Hawkyns M., Saucedo P.E., Carreón-Palau L., Gómez-Robles M.E., Acosta-Salmón H. 2014. Docosapolyenoic fatty acids are essential to improve egg quality in Pteria sterna (Bivalvia: Pteriidae). Aquaculture 432: 74–79.
Helm M.M., Bourne N., Lovatelli A. 2006. Cultivo de bivalvos en criadero. Un manual práctico. FAO Documento Técnico de Pesca 471, 184 pp. ISBN 92-5-305224-4.
Hoyos-Chairez F., Aragón-Noriega E., Chávez-Villalba J. 2020. Modelling early growth of the pearl oyster Pteria sterna under pilot-commercial production. Aquac. Res. 51: 5106–5117. https://doi.org/10.1111/are.14849.
Jara F., Freites L., Gregori M., Márquez A., Rodríguez-Pesantes D., Lodeiros C. 2021. Effect of different nuclei sizes and culture time on the quality of half pearls (mabé) produced by the winged pearl oyster Pteria sterna (Gould, 1851) in Ecuador. Aquaculture 546: 737278. https://doi.org/10.1016/j.aquaculture.2021.737278.
Kiefert L., McLaurin D., Arizmendi E., Hänni H.A., Elen S. 2004. Cultured pearls from the Gulf of California, Mexico. Gems & Gemology 40: 26–38.
Kim Y., Ashton-Alcox K.A., Powell E.N. 2006. Histological Techniques for Marine Bivalve Molluscs: Update. Silver Spring, MD. NOAA Technical Memorandum NOS NCCOS 27.
Knauer J., Southgate P.C. 1999. A review of the nutritional requirements of bivalves and the development of alternative and artificial diets for bivalve aquaculture. Rev. Fish. Sc. 7: 241–280. https://doi.org/10.1080/10641269908951362.
Le Moullac G., Soyez C., Sham-Koua M., Levy P., Moriceau J., Vonau V., Maihota M., Cochard J.C. 2013. Feeding the pearl oyster Pinctada margaritifera during reproductive conditioning. Aquac. Res. 44: 404–411. 10.1111/j.1365-2109.2011.03045.x.
López-Carvallo J.A., Saucedo P.E., Rodríguez-Jaramillo C., García-Corona J.L., Mazón-Suástegui J.M. 2017. Carbohydrate-rich diets meet energy demands of gametogenesis in hatchery-conditioned mussels (Modiolus capax) at increasing temperatures. J. Shellfish Res. 36: 649–657. 10.2983/035.036.0314.
Maeda-Martínez A.N., Saucedo P.E., Mazón-Suástegui J.M., Acosta-Salmón H., Romero-Meléndez Z. 2016. Scope for growth of juvenile Cortez oyster, Crassostrea corteziensis fed isocaloric diets prepared with microalgae and cereal flours. Latin Am. J. Aquat. Res. 44: 845–849. http://dx.doi.org/10.3856/vol44-issue4-fulltext-20.
Marshall R., McKinley S., Pearce C.M. 2010. Effects of nutrition on larval growth and survival in bivalves. Rev. Aquac. 2: 33–55. https://doi.org/10.1111/j.1753-5131.2010.01022.x.
Matias D., Joaquim S., Matias A.M., Leitão, A. 2016. Reproductive effort of the European clam Ruditapes decussatus (Linnaeus, 1758): influence of different diets and temperatures. Inve. Reprod. Dev. 60: 49–58.
Mazón-Suástegui J.M. 1988. Acondicionamiento y desove de cuatro especies de moluscos bivalvos alimentados con dietas artificiales. Rev. Latinoam. Acuic. 38: 4–12.
Mazón-Suástegui J.M., Ruíz-Ruíz K.M., Parres A., Saucedo P.E. 2008. Combined effects of diet and stocking density on growth and biochemical composition of spat of the Cortez oyster Crassostrea corteziensis during hatchery culturing. Aquaculture 284: 98–105. 10.1016/j.aquaculture.2008.07.022.
Mazón-Suástegui J.M., Parres-Haro A., Ruíz-Ruíz K.M., Rodríguez-Jaramillo M.C., Saucedo P.E. 2009. Influence of hatchery diets on early grow-out of the Cortez oyster Crassostrea corteziensis in Sinaloa, Mexico. Aquac. Res. 40: 1908–1914. https://doi.org/10.1111/j.1365-2109.2009.02347.x
Mazón-Suástegui J.M., Lodeiros C, Avilés-Quevedo A., Rodríguez-Jaramillo C, Ortíz-Cornejo N., Abasolo-Pacheco F. 2017. Cornstarch as a dietary supplement in conditioning broodstock and spat nursery of the Pacific calico scallop, Argopecten ventricosus. Lat. Am. J. Aquat. Res. 45: 915–921. http://dx.doi.org/10.3856/vol45-issue5-fulltext-6.
Mazón-Suástegui J.M., Leyva-Miranda G.A., Arrieche-Galíndez D., Lodeiros C., López-Carvallo J.A. 2019. Influence of hatchery rich-carbohydrates diet on the oyster Crassostrea corteziensis (Hertlein, 1951). Aquac. Res. 50:3078–3081. https://doi.org/10.1111/are.14263.
Meza-Buendía A.K. 2016. Respuesta fisiológica de Pteria sterna (Gould, 1851) en relación a la concentración de alimento y temperatura. Tesis de Maestría, Centro Interdisciplinario de Ciencias Marinas del I.P.N., La Paz, B.C.S., México.
Navarro J.M., Leiva G.E., Martínez G., Aguilera C. 2000. Interactive effects of diet and temperature on the scope for growth of the scallop Argopecten purpuratus during reproductive conditioning. J. Exp. Mar. Biol. Ecol. 247: 67–83. https://doi.org/10.1016/S0022-0981(00)00140-4.
Nevejan N., Courtens V., Hauva M., Gajardo G., Sorgeloos P. 2003. Effect of lipid emulsions on production and fatty acid composition of eggs of the scallop Argopecten purpuratus. Mar. Biol. 143: 327–338. 10.1007/s00227-003-1076-x.
Palacios E., Racotta I.S., Arjona-Leyva O., Marty Y., Le Coz.R., Moal J., Samain J.F. 2007. Lipid composition of the pacific lion-paw scallop Nodipecten subnodosus, in relation to gametogenesis. 2. Lipid classes and sterols. Aquaculture 266: 266–273. https://doi.org/10.1016/j.aquaculture.2007.02.030.
Pérez-Camacho A., Albentosa M., Fernández-Reiriz M.J., Labarta U. 1998. Effect of microalgal and inert cornmeal and cornstarch/ diets on growth performance and biochemical composition of Ruditapes decussatus seed. Aquaculture 160: 89–102. https://doi.org/10.1016/S0044-8486(97)00232-9.
Pirini M., Manuzzi M.P., Pagliarani A., Trombetti F., Borgatti A.R. 2007. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp. Biochem. Physiol. 147B: 616–626. 10.1016/j.cbpb.2007.04.003.
Racotta I.S., Ramírez J.L., Ibarra A.M., Rodríguez-Jaramillo M.C., Carreño D., Palacios E. 2003. Growth and gametogenesis in the lion-paw scallop Nodipecten (Lyropecten) subnodosus. Aquaculture 217: 335–349. https://doi.org/10.1016/S0044-8486(02)00366-6.
Rodríguez-Jaramillo M.C., Hurtado M.A., Romero-Vivas E., Ramírez J.L., Manzano M., Palacios E. 2008. Gonadal development and histochemistry of the tropical oyster, Crassostrea corteziensis (Hertlein, 1951) during an annual reproductive cycle. J. Shellfish Res. 27: 1129–1141. https://doi.org/10.2983/0730-8000-27.5.1129.
Ruíz-Rubio H., Acosta-Salmon H., Olivera A., Southgate PC., Rangel-Dávalos C. 2006. The influence of culture method and culture period on quality of half-pearls (mabé) from the winged pearl oyster Pteria sterna, Gould, 1851. Aquaculture 254: 269–274. https://doi.org/10.1016/j.aquaculture.2005.09.030.
Saucedo P.E., Monteforte M. 1997. Breeding cycle of pearl oyster Pinctada mazatlanica and Pteria sterna (Bivalvia: Pteriidae) at Bahía de La Paz, Baja California Sur, Mexico. J. Shellfish Res. 16: 103–110.
Saucedo P.E. 2017. Advances in hatchery production of the winged pearl oyster Pteria sterna. World Aquac. Mag. Marzo: 15–18.
Saucedo P.E., Southgate P.C. 2008. Reproduction. En: Southgate P.C., Lucas J.S. (ed). The Pearl Oyster: Biology and Culture. Elsevier Science, Amsterdam, Holanda, pp. 131–186.
Saucedo P.E., McLaurin D., Lodeiros-Seijo C., Freites L., Cáceres-Puig J.I., Southgate P.C., Albuquerque M.C.D., Acosta-Salmon H. 2022. Progress towards reestablishing Latin America as a major pearl producing region: a review. Rev. Aquac. 15: 242–260. https://doi.org/10.1111/raq.12714.
Serna-Gallo I., Ruíz-Velazco J.M.J., Acosta-Salmon H., Peña-Messina E., Saucedo P.E. 2014. Growth and reproduction patterns of the winged pearl oyster Pteria sterna, cultivated in tropical Mexico: Implications for pearl farming. Cienc. Mar. 40: 75–88. https://doi.org/10.7773/cm.v40i2.2393.
Soudant P., Val Sanles M., Quere C., Le Coz J.R., Marty Y., Moal J., Samain J.F., Sorgeloos P. 2000. The use of lipid emulsions for sterol supplementation of spat of the Pacific oyster, Crassostrea gigas. Aquaculture 184: 315–326. https://doi.org/10.1016/S0044-8486(99)00323-3.
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., Fujimoto K, Goeke N.M., Olson B.J., Klenk D.C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.
Sokal R.R., Rohlf F.J. 1981. Biometry. The principles and practices of statistics, 2a ed. W.H. Freeman & Co., San Francisco, CA.
Van Handel E. 1965. Estimation of glycogen in small amounts of tissue. Anal. Biochem. 11: 256–265.
Vite-García M.N., Saucedo P.E. 2008. Energy storage and allocation during reproduction of Pacific winged pearl oyster Pteria sterna (Gould, 1851) at Bahía de La Paz, Baja California Sur, Mexico. J. Shellfish Res. 27: 375–383. 10.2983/0730-8000(2008)27[375:ESAADR]2.0.CO;2
Published
Issue
Section
License
Copyright (c) 2023 Pedro Saucedo

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

